I am looking for a way to write this code consisely. It's for replacing certain characters in a Pandas DataFrame column.
df['age'] = ['[70-80)' '[50-60)' '[60-70)' '[40-50)' '[80-90)' '[90-100)']
df['age'] = df['age'].str.replace('[', '')
df['age'] = df['age'].str.replace(')', '')
df['age'] = df['age'].str.replace('50-60', '50-59')
df['age'] = df['age'].str.replace('60-70', '60-69')
df['age'] = df['age'].str.replace('70-80', '70-79')
df['age'] = df['age'].str.replace('80-90', '80-89')
df['age'] = df['age'].str.replace('90-100', '90-99')
I tried this, but it didn't work, strings in df['age'] were not replaced:
chars_to_replace = {
'[' : '',
')' : '',
'50-60' : '50-59',
'60-70' : '60-69',
'70-80' : '70-79',
'80-90' : '80-89',
'90-100': '90-99'
}
for key in chars_to_replace.keys():
df['age'] = df['age'].replace(key, chars_to_replace[key])
CodePudding user response:
Use two passes of regex substitution.
In the first pass, match each pair of numbers separated by -
, and decrement the second number.
In the second pass, remove any occurrences of [
and )
.
By the way, did you mean to have spaces between each pair of numbers? Because as it is now, implicit string concatenation puts them together without spaces.
import re
string = '[70-80)' '[50-60)' '[60-70)' '[40-50)' '[80-90)' '[90-100)'
def repl(m: re.Match):
age1 = m.group(1)
age2 = int(m.group(2)) - 1
return f"{age1}-{age2}"
string = re.sub(r'(\d )-(\d )', repl, string)
string = re.sub(r'\[|\)', '', string)
print(string) # 70-7950-5960-6940-4980-8990-99
The repl
function above can be condensed into a lambda:
repl = lambda m: f"{m.group(1)}-{int(m.group(2))-1}"
Update: Actually, this can be done in one pass.
import re
string = '[70-80)' '[50-60)' '[60-70)' '[40-50)' '[80-90)' '[90-100)'
repl = lambda m: f"{m.group(1)}-{int(m.group(2))-1}"
string = re.sub(r'\[(\d )-(\d )\)', repl, string)
print(string) # 70-7950-5960-6940-4980-8990-99
CodePudding user response:
In addition to previous response, if you want to apply the regex substitution to your dataframe, you can use the apply
method from pandas
. To do so, you need to put the regex substitution into a function, then use the apply
method:
def replace_chars(chars):
string = re.sub(r'(\d )-(\d )', repl, chars)
string = re.sub(r'\[|\)', ' ', string)
return string
df['age'] = df['age'].apply(replace_chars)
print(df)
which gives the following output:
age
0 70-79 50-59 60-69 40-49 80-89 90-99
By the way, here I put spaces between the ages intervals. Hope this helps.
CodePudding user response:
Assuming these brackets are on all of the entries, you can slice them off and then replace the range strings. From the docs, pandas.Series.replace
, pandas
will replace the values from the dict without the need for you to loop.
import pandas as pd
df = pd.DataFrame({
"age":['[70-80)', '[50-60)', '[60-70)', '[40-50)', '[80-90)', '[90-100)']})
ranges_to_replace = {
'50-60' : '50-59',
'60-70' : '60-69',
'70-80' : '70-79',
'80-90' : '80-89',
'90-100': '90-99'}
df['age'] = df['age'].str.slice(1,-1).replace(ranges_to_replace)
print(df)
Output
age
0 70-79
1 50-59
2 60-69
3 40-50
4 80-89
5 90-99
CodePudding user response:
change the last part to this
for i in range(len(df['age'])):
for x in chars_to_replace:
df['age'].iloc[i]=df['age'].iloc[i].replace(x,chars_to_replace[x])