I am trying to aggregate records with a specific type into subsequent records.
I have a dataset similar to the following:
df_initial <- data.frame("Id" = c(1, 2, 3, 4, 5),
"Qty" = c(105, 110, 100, 115, 120),
"Type" = c("A", "B", "B", "A", "A"),
"Difference" = c(30, 34, 32, 30, 34))
After sorting on the Id field, I'd like to aggregate records of Type = "B" into the next record of type = "A".
In other words, I'm looking to create df_new
, which adds the Qty
and Difference
values for Ids 2 and 3 into the Qty
and Difference
values for Id 4, and flags Id 4 as being adjusted (in the field AdjustedFlag
).
df_new <- data.frame("Id" = c(1, 4, 5),
"Qty" = c(105, 325, 120),
"Type" = c("A", "A", "A"),
"Difference" = c(30, 96, 34),
"AdjustedFlag" = c(0, 1, 0))
I'd greatly appreciate any advice or ideas about how to do this in R, preferably using data.table
.
CodePudding user response:
A data.table
solution:
df_initial[, .(
Id = Id[.N], Qty = sum(Qty),
Difference = sum(Difference),
AdjustedFlag = (.N > 1)
), by = .(grp = rev(cumsum(rev(Type == "A"))))
][, grp := NULL][]
# Id Qty Difference AdjustedFlag
# <num> <num> <num> <int>
# 1: 1 105 30 0
# 2: 4 325 96 1
# 3: 5 120 34 0
CodePudding user response:
This can be solved by creating a new grouping variable, that groups the rows into the groups you describe, with the idea being to utilize that grouping variable for the desired aggregation.
Instead of having
A B B A A
that new grouping variable should look something like this:
1 2 2 2 3
This is not a data.table
solution, but the same logic could be applied there:
library(tidyverse)
df_initial |>
mutate(
type2 = ifelse(Type == "A", as.numeric(factor(Type)), 0),
type2 = cumsum(type2),
type2 = ifelse(Type == "B", NA, type2)
) |>
fill(type2, .direction = "up") |>
group_by(type2) |>
summarise(
id = max(Id),
Qty = sum(Qty),
Difference = sum(Difference),
AdjustedFlag = as.numeric(n() > 1)
)
#> # A tibble: 3 × 5
#> type2 id Qty Difference AdjustedFlag
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 105 30 0
#> 2 2 4 325 96 1
#> 3 3 5 120 34 0
CodePudding user response:
Using tidyverse
df_initial %>%
mutate(gn = if_else(lag(Type, default = 'A') == 'B' | Type == 'B', 'B', Type),
gr = cumsum(lag(gn, default = 'A') != gn),
adjusted = if_else(lag(Type, default = 'A') == 'B' | Type == 'B', 1, 0)) %>%
group_by(gr) %>%
summarise(Id = last(Id),
Qty = sum(Qty),
Type = 'A',
Difference = sum(Difference),
Adjusted_flg = max(adjusted)) %>% ungroup()
Here we create an interim dataset that looks like:
Id Qty Type Difference gn gr Adjusted
1 1 105 A 30 A 0 0
2 2 110 B 34 B 1 0
3 3 100 B 32 B 1 0
4 4 115 A 30 B 1 1
5 5 120 A 34 A 2 0
And use this to create our final table within the summarise
. The gr
is a column for indicating a group of values, which is why we group_by
it.