I have data which it comes from a csv file, and I am trying to get the max date.
Data:
0 01/01/1994
1 01/01/1994
2 01/01/1994
3 01/01/1994
4 01/01/1994
.
.
.
970075 31/08/2021
970076 31/08/2021
970077 31/08/2021
970078 31/08/2021
970079 31/08/2021
However, I get the wrong max value. It seems that my code sets as string my date column, and not as date format, even though I set to_datetime. Because of that, I use re
on that string to get the year.
My code:
file['Date'] = pd.to_datetime(file['Date'], errors = 'coerce',
dayfirst = True, format = '%d.%m.%Y'
).dt.strftime('%d/%m/%Y')
print(file['Date'].min(), file['Date'].max(), range(int(re.search(r'(\d{4})', file['Date'].min()).group()), int(re.search(r'(\d{4})', file['Date'].max()).group())))
Returns:
01/01/1994 31/12/2020 range(1994, 2020)
I would like to get the max 31/08/2021
and not 31/12/2020
.
CodePudding user response:
Remove .dt.strftime
for converting datetimes to strings repr.
.dt.strftime('%d/%m/%Y')
You can convert to custom format after min
and max
.
All together, also simplify for get maximal and minimal years:
file['Date'] = pd.to_datetime(file['Date'], errors = 'coerce', dayfirst = True)
years = file['Date'].dt.year
print(file['Date'].min().strftime('%d/%m/%Y'),
file['Date'].max().strftime('%d/%m/%Y'),
range(years.min(), years.max()))
01/01/1994 31/08/2021 range(1994, 2021)