I have an expression
df_1['result'][df_1['result'].isnull() & df_1['id'].notnull() ] = df_1['M'][df_1['result'].isnull() & df_1['id'].notnull()].apply(lambda x: [0]*len(x))
I get the following mistake
A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead
I am trying to rewrite it like this
df_1.iloc[:,'result'][df_1.iloc[:,result].isnull() & df_1.iloc[:,'id'].notnull()] = df_1.iloc[:,'M'][df_1.iloc[:,result].isnull() & df_1.iloc[:,'id'].notnull()].apply(lambda x: [0]*len(x))
I get the following mistake
only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
But as far as I know I can call columns by name,not by index
CodePudding user response:
You should use loc
:
df_1.loc[df_1['result'].isnull() & df_1['id'].notnull(), 'result'] = df_1.loc[df_1['result'].isnull() & df_1['id'].notnull(), 'M'].apply(lambda x: [0]*len(x))
Or if that doesn't work add df_1 = df_1.copy()
before the above line.