Home > Blockchain >  Normalizing returns to 100
Normalizing returns to 100

Time:10-07

I have the following data set:

import pandas as pd
data = [['2020-01-01', 'A', 0.05], ['2020-01-02', 'A', 0.06], ['2020-01-03', 'A', 0.12], ['2020-01-04', 'A', 0.09], ['2020-01-05', 'A', 0.07],   ['2020-01-01', 'B', 0.10], ['2020-01-02', 'B', 0.20], ['2020-01-03', 'B', 0.15], ['2020-01-04', 'B', 0.12], ['2020-01-05', 'B', 0.18],    ['2020-01-01', 'C', 0.05], ['2020-01-02', 'C', 0.11], ['2020-01-03', 'C', 0.18], ['2020-01-04', 'C', 0.09], ['2020-01-05', 'C', 0.22]]
df = pd.DataFrame(data, columns = ['DATE', 'Stock', 'Return'])
df

Out[1]:
          DATE Stock  Return
0   2020-01-01     A    0.05
1   2020-01-02     A    0.06
2   2020-01-03     A    0.12
3   2020-01-04     A    0.09
4   2020-01-05     A    0.07
5   2020-01-01     B    0.10
6   2020-01-02     B    0.20
7   2020-01-03     B    0.15
8   2020-01-04     B    0.12
9   2020-01-05     B    0.18
10  2020-01-01     C    0.05
11  2020-01-02     C    0.11
12  2020-01-03     C    0.18
13  2020-01-04     C    0.09
14  2020-01-05     C    0.22

My objective is to normalize the stock return to 100 at the beginning of the time-series, and then adjust it according to the corresponding stock performance in subsequent days. I aim to receive the following (reflected in the column "Price"):

data2 = [['2020-01-01', 'A', 0.05, 100], ['2020-01-02', 'A', 0.06, 120], ['2020-01-03', 'A', 0.12, 240], ['2020-01-04', 'A', 0.09, 180], ['2020-01-05', 'A', 0.07, 140],   ['2020-01-01', 'B', 0.10, 100], ['2020-01-02', 'B', 0.20, 200], ['2020-01-03', 'B', 0.15, 150], ['2020-01-04', 'B', 0.12, 120], ['2020-01-05', 'B', 0.18, 180],    ['2020-01-01', 'C', 0.05, 100], ['2020-01-02', 'C', 0.11, 220], ['2020-01-03', 'C', 0.18, 360], ['2020-01-04', 'C', 0.09, 180], ['2020-01-05', 'C', 0.22, 440]]
df2 = pd.DataFrame(data2, columns = ['DATE', 'Stock', 'Return', 'Price'])
df2

Out[2]:
          DATE Stock  Return  Price
0   2020-01-01     A    0.05    100
1   2020-01-02     A    0.06    120
2   2020-01-03     A    0.12    240
3   2020-01-04     A    0.09    180
4   2020-01-05     A    0.07    140
5   2020-01-01     B    0.10    100
6   2020-01-02     B    0.20    200
7   2020-01-03     B    0.15    150
8   2020-01-04     B    0.12    120
9   2020-01-05     B    0.18    180
10  2020-01-01     C    0.05    100
11  2020-01-02     C    0.11    220
12  2020-01-03     C    0.18    360
13  2020-01-04     C    0.09    180
14  2020-01-05     C    0.22    440

I am aware of a way to reshape the data format from long to wide using the command df = df.reset_index().pivot_table(values='Return', index='DATE', columns='Stock') and then normalize the returns using df = df.pct_change().fillna(0).add(1).cumprod().mul(100).reset_index(), which would yield the following output:

Out[3]:
Stock        DATE      A      B      C
0      2020-01-01  100.0  100.0  100.0
1      2020-01-02  120.0  200.0  220.0
2      2020-01-03  240.0  150.0  360.0
3      2020-01-04  180.0  120.0  180.0
4      2020-01-05  140.0  180.0  440.0

In this case, however, I want all stocks to be listed in one column, as initially suggested. Is there a way to add the column "Price" and computing the values accordingly for each stock, i.e. for each unique value in the column "Stock"? Is a "for"-loop required for this task? Thank you for any suggestions and advices!!

CodePudding user response:

You can use groupby transform with first to grab the first value, then divide each row and *100

df['Price'] = df['Return'].div(df['Return'].groupby(df['Stock']).transform('first'))*100

print(df)

          DATE Stock  Return  Price
0   2020-01-01     A    0.05  100.0
1   2020-01-02     A    0.06  120.0
2   2020-01-03     A    0.12  240.0
3   2020-01-04     A    0.09  180.0
4   2020-01-05     A    0.07  140.0
5   2020-01-01     B    0.10  100.0
6   2020-01-02     B    0.20  200.0
7   2020-01-03     B    0.15  150.0
8   2020-01-04     B    0.12  120.0
9   2020-01-05     B    0.18  180.0
10  2020-01-01     C    0.05  100.0
11  2020-01-02     C    0.11  220.0
12  2020-01-03     C    0.18  360.0
13  2020-01-04     C    0.09  180.0
14  2020-01-05     C    0.22  440.0

CodePudding user response:

In your case do shift with cumprod

def func(x): 
    return 100 * ((x/x.shift()).fillna(1)).cumprod()
df.groupby('Stock')['Return'].transform(func)
Out[138]: 
0     100.0
1     120.0
2     240.0
3     180.0
4     140.0
5     100.0
6     200.0
7     150.0
8     120.0
9     180.0
10    100.0
11    220.0
12    360.0
13    180.0
14    440.0
Name: Return, dtype: float64
  • Related