I have an input dataframe
KPI_ID KPI_Key1 KPI_Key2 KPI_Key3 A (C602 C603) C601 75 B (C605 C606) C602 NaN C 75 L239 C602 NaN D (32*(C603 44)) 75 NaN E L239 NaN C601
I have an Indicator df
99 75 C604 C602 C601 C603 C605 C606 44 L239 32 PatientID 1 1 0 1 0 1 0 0 0 1 0 1 2 0 0 0 0 0 0 1 1 0 0 0 3 1 1 1 1 0 1 1 1 1 1 1 4 0 0 0 0 0 1 0 1 0 1 0 5 1 0 1 1 1 1 0 1 1 1 1
source:
input_df = pd.DataFrame({'KPI_ID': ['A','B','C','D','E'], 'KPI_Key1': ['(C602 C603)','(C605 C606)','75','(32*(C603 44))','L239'] , 'KPI_Key2' : ['C601','C602','L239 C602','75',np.NaN] , 'KPI_Key3' : ['75',np.NaN,np.NaN,np.NaN,'C601']}) indicator_df = pd.DataFrame({'PatientID': [1,2,3,4,5],'99' : ['1','0','1','0','1'],'75' : ['0','0','1','0','0'],'C604' : ['1','0','1','0','1'],'C602' : ['0','0','1','0','1'],'C601' : ['1','0','0','0','1'],'C603' : ['0','0','1','1','1'],'C605' : ['0','1','1','0','0'],'C606' : ['0','1','1','1','1'],'44' : ['1','0','1','0','1'],'L239' : ['0','0','1','1','1'], '32' : ['1','0','1','0','1'],}).set_index('PatientID')
My Goal is to create an output df like this (by evaluating the input_df against indicator_df )
final_out_df: PatientID KPI_ID KPI_Key1 KPI_Key2 KPI_Key3 1 A 0 1 0 2 A 0 0 0 3 A 2 0 1 4 A 1 0 0 5 A 2 1 0 1 B 0 0 0 2 B 2 0 0 3 B 2 1 0 ... ... ... ... ...
I am VERY Close and my logic works fine except I am unable to handle the NaN values in the input_df.I am able to generate the output for KPI_ID 'A' since none of the three formulas (KPI_Key1,KPI_Key2,KPI_Key3 for 'A') are null. But I fail to generate it for 'B'. Is there anything I can do instead of using a dummy variuable in place of NaN and creating that row in indicator_df? Here is what I did so far:
indicator_df = indicator_df.astype('int32') final_out_df = pd.DataFrame() out_df = pd.DataFrame(index=indicator_df.index) out_df.reset_index(level=0, inplace=True) final_out_df = pd.DataFrame() #running loop only for 'A' so it won't fail for i in range(0,len(input_df)-4): for j in ['KPI_Key1','KPI_Key2','KPI_Key3']: exp = input_df[j].iloc[i] temp_out_df=indicator_df.eval(re.sub(r'(\w )', r'`\1`', exp)).reset_index(name=j) out_df['KPI_ID'] = input_df['KPI_ID'].iloc[i] out_df = out_df.merge(temp_out_df, on='PatientID', how='left') final_out_df= final_out_df.append(out_df) out_df = pd.DataFrame(index=indicator_df.index) out_df.reset_index(level=0, inplace=True)
CodePudding user response:
Replace NaN
by None
and create a dict of local variables to allow a correct evaluation with pd.eval
:
def eval_kpi(row):
kpi = row.filter(like='KPI_Key').fillna('None')
return pd.Series(pd.eval(kpi, local_dict=row['local_vars']), index=kpi.index)
final_out_df = indicator_df.astype(int).apply(dict, axis=1) \
.rename('local_vars').reset_index() \
.merge(input_df, how='cross')
final_out_df.update(final_out_df.apply(eval_kpi, axis=1))
final_out_df = final_out_df.drop(columns='local_vars') \
.sort_values(['KPI_ID', 'PatientID']) \
.reset_index(drop=True)
Output:
>>> final_out_df
PatientID KPI_ID KPI_Key1 KPI_Key2 KPI_Key3
0 1 A 0.0 1.0 75.0
1 2 A 0.0 0.0 75.0
2 3 A 2.0 0.0 75.0
3 4 A 1.0 0.0 75.0
4 5 A 2.0 1.0 75.0
5 1 B 0.0 0.0 NaN
6 2 B 2.0 0.0 NaN
7 3 B 2.0 1.0 NaN
8 4 B 1.0 0.0 NaN
9 5 B 1.0 1.0 NaN
10 1 C 75.0 0.0 NaN
11 2 C 75.0 0.0 NaN
12 3 C 75.0 2.0 NaN
13 4 C 75.0 1.0 NaN
14 5 C 75.0 2.0 NaN
15 1 D 1408.0 75.0 NaN
16 2 D 1408.0 75.0 NaN
17 3 D 1440.0 75.0 NaN
18 4 D 1440.0 75.0 NaN
19 5 D 1440.0 75.0 NaN
20 1 E 0.0 NaN 1.0
21 2 E 0.0 NaN 0.0
22 3 E 1.0 NaN 0.0
23 4 E 1.0 NaN 0.0
24 5 E 1.0 NaN 1.0
CodePudding user response:
I was able to solve it by adding:
if exp == exp:
before parsing the exp
through the regex
.