I need to get the cell reference (row#, col#) for all the areas in my pandas data frame that contains a value == 1.
import pandas as pd
import numpy as np
df = pd.DataFrame({'x': [np.nan, 1, np.nan, np.nan, 1],
'y': [np.nan, np.nan, np.nan, np.nan, 1],
'z': [1, np.nan, 1, np.nan, np.nan]})
Looking to get a final dataframe with two columns: row & col that looks like:
row col
0 1 1
1 4 1
2 4 2
3 0 3
4 2 3
CodePudding user response:
You can use numpy.argwhere
.
This should be much faster than all solutions using for
loop, df.stack
, etc. Please see the timings below:
In [145]: import numpy as np
In [146]: res = pd.DataFrame(np.argwhere(df.notnull().values).tolist(), columns=['row', 'col'])
In [147]: res.col = res.col 1
In [148]: res
Out[148]:
row col
0 0 3
1 1 1
2 2 3
3 4 1
4 4 2
Timings:
np.argwhere
:
In [149]: %timeit pd.DataFrame(np.argwhere(df.notnull().values).tolist(), columns=['row', 'col'])
437 µs ± 4.71 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
@sophocles solution using df.stack
:
In [151]: %timeit pd.DataFrame(df[df.notna()].stack().index.tolist(),columns=['row','col'])
1.33 ms ± 5.55 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
CodePudding user response:
You can use notna()
to get a boolean DataFrame back, and stack()
to remove the nan
which have been converted to False
. Grab the index
and convert to list so that you can easily convert to DataFrame.
Wrapping that in a pd.DataFrame()
with correct column names gives you what you need:
df.columns=[1,2,3]
pd.DataFrame(df[df.notna()].stack().index.tolist(),columns=['row','col'])
row col
0 0 3
1 1 1
2 2 3
3 4 1
4 4 2
CodePudding user response:
You can just iterate over rows and columns:
res_df = pd.DataFrame(columns=['row', 'col'])
for i in range(len(df)):
for j in range(len(df.columns)):
if df[df.columns[j]].iloc[i] == 1:
res_df = res_df.append({'row': i, 'col': j 1}, ignore_index=True)
print(res_df.sort_values(by='col').reset_index(drop=True))
row col
0 1 1
1 4 1
2 4 2
3 0 3
4 2 3
CodePudding user response:
You can try this:
import pandas as pd
import numpy as np
df = pd.DataFrame({'x': [np.nan, 1, np.nan, np.nan, 1],
'y': [np.nan, np.nan, np.nan, np.nan, 1],
'z': [1, np.nan, 1, np.nan, np.nan]})
list_indexes = []
for idx in range(len(df.columns)):
rows = df.index[df.iloc[:, idx] == 1].tolist()
for row in rows:
list_indexes.append((row, idx 1))
final = pd.DataFrame(list_indexes, columns=['row', 'column'])
print(final)
CodePudding user response:
You can do this:
df.columns=list(range(1,len(df.columns) 1))
1 2 3
0 NaN NaN 1.0
1 1.0 NaN NaN
2 NaN NaN 1.0
3 NaN NaN NaN
4 1.0 1.0 NaN
new_df = df.stack().reset_index().rename(columns = {'level_0':'row', 'level_1':'col'})[['row', 'col']]
row col
0 0 3
1 1 1
2 2 3
3 4 1
4 4 2