Say I had a data frame like the following:
df = pd.DataFrame()
df['v'] = [0,0,0,0,0,1,1,1,1]
df['w'] = [1,1,1,1,1,0,0,0,0]
df['x'] = (df.v df.w) 10
df['y'] = (df.v df.w) 5
df['z'] = ...
I need a new column, df.z
, to equal df.x if df.v = 1
and df.y if df.w = 1
Of course, I could use df.apply
here:
def non_vector(row):
if row['v'] == 1: return row['x']
if row['w'] == 1: return row['y']
df['z'] = df.apply(non_vector, axis=1)
print df
v w x y z
0 0 1 11 6 6
1 0 1 11 6 6
2 0 1 11 6 6
3 0 1 11 6 6
4 0 1 11 6 6
5 1 0 11 6 11
6 1 0 11 6 11
7 1 0 11 6 11
8 1 0 11 6 11
But the issue seems straight forward enough for a vectorized method, as this is actually painfully slow.
Any help appreciated.
CodePudding user response:
Why not do this:
df['z'] = np.where(df['v']==1, df['x'],np.where(df['v']==0,df['y'], np.nan))
If df.v
only takes the values 0 and 1, then
df['z'] = np.where(df['v']==1, df['x'],df['y'])
is enough. In both case you'd get:
v w x y z
0 0 1 11 6 6.0
1 0 1 11 6 6.0
2 0 1 11 6 6.0
3 0 1 11 6 6.0
4 0 1 11 6 6.0
5 1 0 11 6 11.0
6 1 0 11 6 11.0
7 1 0 11 6 11.0
8 1 0 11 6 11.0