I have a Pandas dataframe which look like this.
Deviated_price standard_price
744,600 789,276
693,600 789,276
693,600 735,216
735,216
744,600 735,216
735,216
I want to create a new column called net_standard_price. values for the net standard price will be based on Deviated_price and standard_price columns.
If Deviated price is not blank then net_standard_price should be blank. If Deviated price is blank then net_standard_price should contain standard_price value.
Net_standard_price should look like this.
Deviated_price standard_price Net_standard_price
789,276 789,276
693,600 789,276
693,600 735,216
735,216 735,216
744,600 735,216
735,216 735,216
I tried below code using np.where but Net_standard_price is empty for all the records.
df['Net_standard_price'] = np.where(df['Deviated_price'] != '',
'', df['standard_price'])
What's the most efficient way to do this?
CodePudding user response:
Moving to numpy domain gave some performance boost
import pandas as pd
import numpy as np
from timeit import Timer
def make_df():
random_state = np.random.RandomState()
df = pd.DataFrame(random_state.random((10000, 2)), columns=['Deviated_price', 'standard_price'], dtype=str)
df['Deviated_price'][random_state.randint(0, 2, len(df)).astype(np.bool)] = None
return df
def test1(df):
df['Net_standard_price'] = np.where(df['Deviated_price'] != '',
'', df['standard_price'])
def test2(df):
df['Net_standard_price'] = np.where(df['Deviated_price'].isna(), df['standard_price'], None)
def test3(df):
temp = df['standard_price'].values
temp2 = df['Deviated_price'].values
net_standard_price = temp.copy()
net_standard_price[temp2 == ''] = ''
df['Net_standard_price'] = net_standard_price
timing = Timer(setup='df = make_df()', stmt='test1(df)', globals=globals()).timeit(500)
print('test1: ', timing)
timing = Timer(setup='df = make_df()', stmt='test2(df)', globals=globals()).timeit(500)
print('test2: ', timing)
timing = Timer(setup='df = make_df()', stmt='test3(df)', globals=globals()).timeit(500)
print('test3: ', timing)
test1: 0.42146812000000006
test2: 0.417552648
test3: 0.2913768969999999