I am facing the following issue, when trying to fit my model:
ValueError: Input 0 of layer "model" is incompatible with the layer: expected shape=(None, 256, 96, 3), found shape=(None, 1, 8, 3, 512)
Details of my model below:
img_height = 96
img_width = 256
#Get back the convolutional part of a VGG network trained on ImageNet
model_vgg16_conv = VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3))
#Create your own input format (here 3x200x200)
input = Input(shape=(img_width, img_height, 3))
#Use the generated model
output_vgg16_conv = model_vgg16_conv(input)
#Add the fully-connected layers
x = Flatten(name='flatten')(output_vgg16_conv)
x = Dense(512, activation='relu', name='Dense1')(x)
x = Dropout(0.2, name = 'Dropout')(x)
x = Dense(45, activation='softmax', name='predictions')(x)
#Create your own model
my_model = Model(inputs=input, outputs=x)
#In the summary, weights and layers from the VGG part will be hidden, but they will be fit during the training
my_model.summary()
my_model.compile(
loss = 'sparse_categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy']
)
my_model.fit(
features,
labels,
batch_size = 5,
epochs = 15,
validation_split = 0.1,
callbacks=[TensorBoard]
)
Any suggestions to adjust my model to resolve the issue? Please note that features: X, label: y, total images: 4193 and 4 classes
My dataset generates code:
conv_base = VGG16(
weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3)
)
image reshape
for input_image in tqdm(os.listdir(dir)):
try:
img = image.load_img(os.path.join(dir, input_image), target_size=(img_width, img_height))
img_tensor = image.img_to_array(img)
img_tensor /= 255.
pic = conv_base.predict(img_tensor.reshape(1, img_width, img_height, 3))
data.append([pic, index])
except Exception as e:
pass
do I need to do any adjustments to this?
CodePudding user response:
You need to make sure that your inputs to your model are correct. I am using randomly generated data tf.random.normal((64, 256, 96, 3))
, where 64 is the number of samples, 256 is your img_width
, 96 is your img_height
, and 3 is the number of channels. Also note that if you have 4 classes, your output layer should have 4 nodes.
import tensorflow as tf
img_height = 96
img_width = 256
#Get back the convolutional part of a VGG network trained on ImageNet
model_vgg16_conv = tf.keras.applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3))
#Create your own input format (here 3x200x200)
input = tf.keras.layers.Input(shape=(img_width, img_height, 3))
#Use the generated model
output_vgg16_conv = model_vgg16_conv(input)
#Add the fully-connected layers
x = tf.keras.layers.Flatten(name='flatten')(output_vgg16_conv)
x = tf.keras.layers.Dense(512, activation='relu', name='Dense1')(x)
x = tf.keras.layers.Dropout(0.2, name = 'Dropout')(x)
x = tf.keras.layers.Dense(4, activation='softmax', name='predictions')(x)
#Create your own model
my_model = tf.keras.Model(inputs=input, outputs=x)
#In the summary, weights and layers from the VGG part will be hidden, but they will be fit during the training
my_model.summary()
my_model.compile(
loss = 'sparse_categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy']
)
my_model.fit(
tf.random.normal((64, 256, 96, 3)),
tf.random.uniform((64, 1), maxval=4),
batch_size = 5,
epochs = 15)
To reshape your tensor with the shape (256, 96, 3)
to (1, 256, 96, 3)
, try:
import tensorflow as tf
tensor = tf.random.normal((256, 96, 3))
tensor = tf.expand_dims(tensor, axis=0)
print(tensor.shape)
(1, 256, 96, 3)