I have an issue with sorting a dataframe from hdfs hive context. trying to sort a dataframe of a similar structure to this:
--- -------------- ---------------
| id|parameter_name|parameter_value
--- -------------- ---------------
|id1| name_en | value a
|id1| name_il | value b
|id1| address_en| value c
|id1| address_il| value d
|id2| name_il | value f
|id2| name_en | value e
|id2| address_il| value h
|id1| address_en| value g
--- -------------- ---------------
I am trying to sort this dataframe in a way that the id is sorted and the parameter_name sequence in the df for each id is as follows:
name_en
name_il
address_en
address_il
note that in the example that is not the case and the names and addresses between id's are flipped.
Trying to use df.sort(["id","parameter_name"]) yields mixed results, mixing the dataframe further and splitting the id to:
id1, name_en
id1, name_il
id2, name_il
id2, name_en
id1, address_en
id1, address_il
id2, address_il
id2, address_en
CodePudding user response:
I created your dataframe but assigned random values to parameter_value
so the order is not relevant anymore.
from random import random
data = [
{"id": "id1", "parameter_name": "name_en", "parameter_value": random()},
{"id": "id1", "parameter_name": "name_il", "parameter_value": random()},
{"id": "id1", "parameter_name": "address_en", "parameter_value": random()},
{"id": "id1", "parameter_name": "address_il", "parameter_value": random()},
{"id": "id2", "parameter_name": "name_il", "parameter_value": random()},
{"id": "id2", "parameter_name": "name_en", "parameter_value": random()},
{"id": "id2", "parameter_name": "address_il", "parameter_value": random()},
{"id": "id2", "parameter_name": "address_en", "parameter_value": random()},
]
df = spark.createDataFrame(data)
df.show()
--- -------------- -------------------
| id|parameter_name| parameter_value|
--- -------------- -------------------
|id1| address_il|0.11850447351294957|
|id2| name_en|0.18902815459657452|
|id2| address_il| 0.294998203578158|
|id1| address_en|0.48741740190944827|
|id2| name_il| 0.5651073044407224|
|id2| address_en| 0.6530661784882391|
|id1| name_il| 0.6797674631659714|
|id1| name_en| 0.9887386653580036|
--- -------------- -------------------
then, I need to create an ordering column to maintain the artificial order you need :
from pyspark.sql import functions as F
ordering_col = (
F.when(F.col("parameter_name") == "name_en", 1)
.when(F.col("parameter_name") == "name_il", 2)
.when(F.col("parameter_name") == "address_en", 3)
.when(F.col("parameter_name") == "address_il", 4)
)
df.orderBy("id", ordering_col).show()
--- -------------- -------------------
| id|parameter_name| parameter_value|
--- -------------- -------------------
|id1| name_en| 0.9887386653580036|
|id1| name_il| 0.6797674631659714|
|id1| address_en|0.48741740190944827|
|id1| address_il|0.11850447351294957|
|id2| name_en|0.18902815459657452|
|id2| name_il| 0.5651073044407224|
|id2| address_en| 0.6530661784882391|
|id2| address_il| 0.294998203578158|
--- -------------- -------------------
CodePudding user response:
Simply transform the Pyspark dataframe to a Pandas dataframe and perform the sort operation. You may transform the dataframe back with sparkContext.createDataFrame(panda_df)
like so:
panda_df = dataframe.toPandas().sort_values(["id", "parameter_name"], ascending=(True, False))
sorted_df = sparkContext.createDataFrame(panda_df)
sorted_df.show()