Home > Blockchain >  Visualization of an array in matplotlib
Visualization of an array in matplotlib

Time:11-26

I am trying to visualize a random array with the square shape of (10, 10) in Python using matplotlib (3.5 version). I am also including the xaxis and yaxis ticks, but the ticks for 10 show empty data. Does anyone know how to sort it out?

Here's my code:

import numpy as np

from matplotlib import pyplot as plt
import matplotlib.pylab as pylab
params = {'legend.fontsize': 'medium',
          'figure.figsize': (15, 5),
         'axes.labelsize': 'x-large',
         'axes.titlesize':'x-large',
         'xtick.labelsize':'x-large',
         'ytick.labelsize':'x-large'}
pylab.rcParams.update(params)

arr = np.random.rand(10, 10)
plt.imshow(arr)
plt.ylim(0, 10)
plt.xlim(0, 10)

plt.xticks(np.arange(0.0, 11.0, 1.0))
plt.yticks(np.arange(0.0, 11.0, 1.0))

plt.show()

This is the produced image:

enter image description here

CodePudding user response:

As other users pointed, Python arrays start indexing in '0'. You could trick the ticks to show the values you want:

  1. create data to plot

    import numpy as np
    
    from matplotlib import pyplot as plt
    import matplotlib.pylab as pylab
    params = {'legend.fontsize': 'medium',
              'figure.figsize': (15, 5),
             'axes.labelsize': 'x-large',
             'axes.titlesize':'x-large',
             'xtick.labelsize':'x-large',
             'ytick.labelsize':'x-large'}
    pylab.rcParams.update(params)
    
    arr = np.random.rand(10, 10)
    
    
    
  2. Then you can use plt.xticks(tickPosition,tickValues) and same with yticks. Note that every number point to the center of every value in your image so also you have to change your lim positions:

    plt.figure()
    plt.imshow(arr)
    plt.ylim(-0.5, 9.5) #to show no blank spaces
    plt.xlim(-0.5, 9.5) #to show no blank spaces
    
    plt.xticks(np.arange(0, 10),np.arange(1, 11)) #trick the ticks
    plt.yticks(np.arange(0, 10),np.arange(1, 11))

This will give you the next figure

Tricked points

  1. Also you can set values at start (left-down corner) just tricking a little more:
    plt.xticks(np.arange(-0.5, 9.5),np.arange(1, 11))
    plt.yticks(np.arange(-0.5, 9.5),np.arange(1, 11))

this will give you this result:

with ticks at "start" of pixel

  • Related