I have these data:
df1 <- data.frame(matrix(, nrow=2, ncol=2))
colnames(df1) <- c("ca", "ea")
df1$ca <- c("A=C,T=G", "T=C,G=G")
df1$ea <- c("G", "T")
And I want to make a new column called "match" which gives me the letter in column "ca" that is equal to the letter in column "ea". So my output would look like this:
df1 <- data.frame(matrix(, nrow=2, ncol=2))
colnames(df1) <- c("ca", "ea")
df1$ca <- c("A=C,T=G", "T=C,G=G")
df1$ea <- c("G", "T")
df1$match <- c("T", "C")
It is tricky because in the first instance the letter I want to match on is after the "=", but in the second instance it precedes it.
CodePudding user response:
Here's another tidyverse
solution that might a little bit simpler using regular expressions. You need to have R > 4.0 to use the |>
pipe operator, if that's not the case just substitute it by %>%
.
library(tidyverse)
df1 |>
# add a named match column as an extracted string by the following
# two possible patterns
mutate(match = str_extract(ca,
# Search for the letter preceded by ea=
paste0(paste0("(?<=",ea,"\\=)","[A-Z]"),
# or
"|",
# search for the letter followed by =ea
paste0("[A-Z]","(?=\\=",ea,")"))))
# ca ea match
# 1 A=C,T=G G T
# 2 T=C,G=G T C
CodePudding user response:
I believe this should work for you :
df1 <- data.frame(matrix(, nrow=2, ncol=2))
colnames(df1) <- c("ca", "ea")
df1$ca <- c("A=C,T=G", "T=C,G=G")
df1$ea <- c("G", "T")
my_f <- function(x) {
my_pattern <- paste("[ACGT]=", df1[x, "ea"], "|", df1[x, "ea"], "=[ACGT]", sep
= "")
my_a <- str_extract_all(string = df1[x, "ca"], pattern = my_pattern, simplify = TRUE)
my_pattern <- paste(df1[x, "ea"], "|=", sep = "")
my_a <- gsub(pattern = my_pattern, replacement = "", x = my_a)
return (my_a)
}
df1$match <- lapply(1:nrow(df1), my_f)
CodePudding user response:
Good opportunity for a simple branch reset group
df1 <- data.frame(matrix(, nrow=2, ncol=2))
colnames(df1) <- c("ca", "ea")
df1$ca <- c("A=C,T=G", "T=C,G=G")
df1$ea <- c("G", "T")
df1$match <- c("T", "C")
mapply(
function(p, x)
gsub(sprintf('(?|%s=(.)|(.)=%s)|.', p, p), '\\1', x, perl = TRUE),
df1$ea, df1$ca, USE.NAMES = FALSE
)
# [1] "T" "C"
CodePudding user response:
library(tidyverse)
df1 <- data.frame(matrix(, nrow = 2, ncol = 2))
colnames(df1) <- c("ca", "ea")
df1$ca <- c("A=C,T=G", "T=C,G=G")
df1$ea <- c("G", "T")
df1
#> ca ea
#> 1 A=C,T=G G
#> 2 T=C,G=G T
df1 %>%
mutate(
match = ea %>% map2_chr(ca, function(ea, ca) {
ca %>%
str_split(",") %>%
simplify() %>%
keep(~ str_detect(.x, ea)) %>%
str_remove_all(str_glue("[=|{ea}]"))
})
)
#> ca ea match
#> 1 A=C,T=G G T
#> 2 T=C,G=G T C
Created on 2021-12-08 by the reprex package (v2.0.1)
CodePudding user response:
Using tidyr::separate
and dplyr::case_when
.
df1 %>% separate(ca, into = c("ca1","ca2","ca3","ca4")) %>%
mutate(match = case_when(ea == ca1 ~ ca2,
ea == ca2 ~ ca1,
ea == ca3 ~ ca4,
ea == ca4 ~ ca3))
ca1 ca2 ca3 ca4 ea match
1 A C T G G T
2 T C G G T C