i have a doubt. There is an efficient way to sum all neighbors of a numpy matrix without using several conditions?
This is an example:
array([[5, 4, 8, 3, 1, 4, 3, 2, 2, 3],
[2, 7, 4, 5, 8, 5, 4, 7, 1, 1],
[5, 2, 6, 4, 5, 5, 6, 1, 7, 3],
[6, 1, 4, 1, 3, 3, 6, 1, 4, 6],
[6, 3, 5, 7, 3, 8, 5, 4, 7, 8],
[4, 1, 6, 7, 5, 2, 4, 6, 4, 5],
[2, 1, 7, 6, 8, 4, 1, 7, 2, 1],
[6, 8, 8, 2, 8, 8, 1, 1, 3, 4],
[4, 8, 4, 6, 8, 4, 8, 5, 5, 4],
[5, 2, 8, 3, 7, 5, 1, 5, 2, 6]])
When I run m[0][-1]
it returns me 3 and not an error, so if I want to add 1 to all neighbors of a value I need to use a lot of conditions because I can't just use m[0][-1]
because in this case and in the other cases of the corners it returns me just a " False neighbor"
CodePudding user response:
IIUC, you want to add 1 to each neighbour of a cell with a given value.
For the example, let's add 1 to each cell in the neighborhood of a 7:
from scipy.signal import convolve2d
v = np.array([[1,1,1],[1,0,1],[1,1,1]])
a convolve2d(a==7, v, mode='same')
output:
array([[6, 5, 9, 3, 1, 4, 4, 3, 3, 3],
[3, 7, 5, 5, 8, 5, 5, 8, 3, 2],
[6, 3, 7, 4, 5, 5, 7, 3, 8, 4],
[6, 1, 5, 2, 4, 3, 6, 3, 6, 8],
[6, 3, 7, 8, 5, 8, 5, 5, 7, 9],
[4, 2, 9, 9, 7, 2, 5, 8, 6, 6],
[2, 2, 8, 8, 9, 4, 2, 7, 3, 1],
[6, 9, 9, 3, 8, 8, 2, 2, 4, 4],
[4, 8, 4, 7, 9, 5, 8, 5, 5, 4],
[5, 2, 8, 4, 7, 6, 1, 5, 2, 6]])
CodePudding user response:
In addition to the good @mozway solution, one very efficient solution is to use the Numba stencil decorator combined with a parallel execution. Here is an example:
import numba as nb
# parallel=True is only useful for quite-big arrays
@nb.njit(parallel=True)
def kernel(v):
cond = np.zeros((v.shape[0] 2, v.shape[1] 2), dtype=np.bool_)
cond[1:-1, 1:-1] = v == 7
res = nb.stencil(lambda c: c[-1,-1] c[-1,0] c[-1,1] c[0,-1] c[0,1] c[1,-1] c[1,0] c[1,1])(cond)
return v res[1:-1, 1:-1]
kernel(m)
An even faster solution consist in working in-place (using v = res
instead of the return v res
). Here are the performance results for a 2000x2000 integer array on my 6-core machine:
scipy.signal.convolve2d: 124 ms
Numba out-of-place: 20 ms
Numba in-place: 15 ms
Note that the first call to kernel
is slower due to the compilation time.
I also got a similar speed-up for smaller arrays (200x200).