Home > Blockchain >  Does using the program stack involves syscalls?
Does using the program stack involves syscalls?

Time:12-14

I'm studying operating system theory, and I know that heap allocation involves a specific syscall and I know that compilers usually optimize for this requesting more than needed beforehand.

But I don't find information about stack allocation. What about it? It involves a specific syscall every time you read from it or write to it (for example when you call a function with some parameters)? Or there is some other mechanism that don't involve syscall perhaps?

CodePudding user response:

Typically when the OS starts your program it examines the executable file's headers and arranges various areas for various things (an area for your executable's code, and area for your executable's data, etc). This includes setting up an initial stack (and a lot more - e.g. finding shared libraries and doing dynamic linking).

After the OS has done all this, your executable starts executing. At this point you already have memory for a stack and can just use it without any system calls.

Note 1: If you create threads, then there will probably be a system call involved to create the thread and that system call will probably allocate memory for the new thread's stack.

Note 2: Typically there's "virtual memory" (what your program sees) and "physical memory" (what the hardware sees); and in between typically the OS does lots of tricks to improve performance and avoid wasting physical memory, and to hide resource limits (so you don't have to worry so much about running out of physical memory). One of these tricks is to allocate virtual memory (e.g. for a large stack) without allocating any actual physical memory, and then allocate the physical memory if/when the virtual memory is first modified. Other tricks include various "swap space" schemes, and memory mapped files. These tricks rely on requests generated by the CPU on your program's behalf (e.g. page fault exceptions) which aren't system calls, but have similar ("ask kernel to do something") characteristics.

Note 3: All of the above depends on which OS. Different operating systems do things differently. I've chosen words carefully - e.g. "Typically" means that most modern operating systems work like I've described (but "typically" does not imply that all possible operating systems work like that; and some operating systems do not work like I've described).

CodePudding user response:

No, stack is normal memory. For process point of view, there is no difference (and so the nasty security bug, where you return a pointer to a data in stack, but stack now is changed.

As Brendan wrote, OS will setup stack for the process at program loading. But if you access a non-allocated page of stack (e.g. if your stack if growing), kernel may allocate automatically for you a new stack page. (not much different as when you try to allocate new memory in heap, and there is no more memory available on program space: but in this case you explicitly do a syscall to tell kernel you want more heap memory).

You will notice that usually stack go in one direction and heap (allocated memory) in the other direction (usually toward each others). So if you program need more stack you have space, but if you program do not need much stack, you can use memory for e.g. huge array. Or the contrary: if you do a lot of recursion, you allocate much stack (but you probably need less heap memory).

Two additional consideration: CPU may have special stack instruction. But you can see them as syntactic sugar (you can simulate PUSH and POP with MOV. CALL and RET with JMP (and simulated PUSH and POP).

And kernel may use a special stack for his own purposes (especially important for interrupts).

  • Related