I want to add a new column to a pyspark dataframe that contains a constant DenseVector. Following is my attempt but it fails:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
data = [(1,2),(3,4),(5,6),(7,8)]
df = spark.createDataFrame(data=data)
@udf(returnType=VectorUDT())
def add_cons_dense_col(val):
return val
df.withColumn('ttt',add_cons_dense_col(DenseVector([1.,0.]))).show()
it fails with :
TypeError Traceback (most recent call last)
/tmp/ipykernel_3894138/803146743.py in <module>
----> 1 df.withColumn('ttt',add_cons_dense_col(DenseVector([1.,0.]))).show()
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/udf.py in wrapper(*args)
197 @functools.wraps(self.func, assigned=assignments)
198 def wrapper(*args):
--> 199 return self(*args)
200
201 wrapper.__name__ = self._name
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/udf.py in __call__(self, *cols)
177 judf = self._judf
178 sc = SparkContext._active_spark_context
--> 179 return Column(judf.apply(_to_seq(sc, cols, _to_java_column)))
180
181 # This function is for improving the online help system in the interactive interpreter.
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/column.py in _to_seq(sc, cols, converter)
59 """
60 if converter:
---> 61 cols = [converter(c) for c in cols]
62 return sc._jvm.PythonUtils.toSeq(cols)
63
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/column.py in <listcomp>(.0)
59 """
60 if converter:
---> 61 cols = [converter(c) for c in cols]
62 return sc._jvm.PythonUtils.toSeq(cols)
63
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/column.py in _to_java_column(col)
43 jcol = _create_column_from_name(col)
44 else:
---> 45 raise TypeError(
46 "Invalid argument, not a string or column: "
47 "{0} of type {1}. "
TypeError: Invalid argument, not a string or column: [1.0,0.0] of type <class 'pyspark.ml.linalg.DenseVector'>. For column literals, use 'lit', 'array', 'struct' or 'create_map' function.
Can you help me understand why this is failing?
CodePudding user response:
You can try
add_cons_dense_col = F.udf(lambda: DenseVector([1., 0.]), VectorUDT())
df = df.withColumn('ttt', add_cons_dense_col())
df.show(truncate=False)