I want to write a wrapper function around a procedure that involves dplyr::mutate()
and purrr::map2()
.
To demonstrate, consider the following tibble called trb
:
df_1 <- mtcars[, c("am", "disp")]
df_2 <- mtcars[, c("mpg", "carb")]
trb <-
tibble::tibble(dat_a = list(df_1),
dat_b = list(df_2))
trb
#> # A tibble: 1 x 2
#> dat_a dat_b
#> <list> <list>
#> 1 <df [32 x 2]> <df [32 x 2]>
I want to mutate another column in trb
, called dat_c
that will include a data frame with one column from dat_a
and one column from dat_b
. The following code allows me to achieve it:
library(dplyr)
library(purrr)
output <-
trb %>%
mutate(dat_c = map2(.x = dat_a, .y = dat_b, .f = ~data.frame(my_lovely_am = .x$am,
suberb_carb_col = .y$carb)))
output %>%
pull(dat_c)
#> [[1]]
#> my_lovely_am suberb_carb_col
#> 1 1 4
#> 2 1 4
#> 3 1 1
#> 4 0 1
#> 5 0 2
#> 6 0 1
# I removed the rest of the rows
How can I wrap the mutate()
procedure as above inside a custom function? Specifically problematic is when referencing .x$bar
and .y$foo
. How can I specify those columns names to be taken from an argument of the wrapper function?
What I imagine is a custom function that is built similarly to:
create_dat_c <- function(.trb, colname_dat_a, colname_dat_b, header_a, header_b) {
.trb %>%
mutate(dat_c = map2(.x = dat_a, .y = dat_b, .f = ~data.frame(header_a = .x$colname_dat_a,
header_b = .y$colname_dat_b)))
}
and is called with:
create_dat_c(trb,
colname_dat_a = am,
colname_dat_b = carb,
header_a = "splendid_am",
header_b = "wonderful_carb")
# and returns:
## # A tibble: 1 x 3
## dat_a dat_b dat_c
## <list> <list> <list>
## 1 <df [32 x 2]> <df [32 x 2]> <df [32 x 2]> <<-~-~- dat_c has 2 cols: splendid_am & wonderful_carb
In sum, it is the part of data.frame(header_a = .x$colname_dat_a, header_b = .y$colname_dat_b)
that I struggle with. How to make it play well with wrapper's arguments?
CodePudding user response:
Here's the function to do that -
library(dplyr)
library(purrr)
create_dat_c <- function(.trb, colname_dat_a, colname_dat_b, header_a, header_b) {
.trb %>%
mutate(dat_c = map2(.x = dat_a, .y = dat_b,
.f = ~tibble(!!header_a := .x %>% pull({{colname_dat_a}}),
!!header_b := .y %>% pull({{colname_dat_b}}))))
}
result <- create_dat_c(trb,
colname_dat_a = am,
colname_dat_b = carb,
header_a = "splendid_am",
header_b = "wonderful_carb")
result
# A tibble: 1 x 3
# dat_a dat_b dat_c
# <list> <list> <list>
#1 <df [32 × 2]> <df [32 × 2]> <tibble [32 × 2]>
result$dat_c
#[[1]]
# A tibble: 32 x 2
# splendid_am wonderful_carb
# <dbl> <dbl>
# 1 1 4
# 2 1 4
# 3 1 1
# 4 0 1
# 5 0 2
# 6 0 1
# 7 0 4
# 8 0 2
# 9 0 2
#10 0 4
# … with 22 more rows
data.frame
doesn't support the !!name :=
syntax that is why I have used tibble
. If you are inclined to use data.frame
you may do -
create_dat_c <- function(.trb, colname_dat_a, colname_dat_b, header_a, header_b) {
.trb %>%
mutate(dat_c = map2(.x = dat_a, .y = dat_b,
.f = ~setNames(data.frame(.x %>% pull({{colname_dat_a}}),
.y %>% pull({{colname_dat_b}})), c(header_a, header_b))))
}
CodePudding user response:
Here is an alternative with unnest
and nest
from tidyr
package:
library(tidyr)
library(dplyr)
result <- trb %>%
unnest(cols = c(dat_a, dat_b)) %>%
mutate(my_lovely_am = am,
suberb_carb_col = carb) %>%
nest(dat_a = 1:2,
dat_b = 3:4,
dat_c = 5:6)
Output:
dat_a dat_b dat_c
<list> <list> <list>
1 <tibble [32 x 2]> <tibble [32 x 2]> <tibble [32 x 2]>
Check:
result$dat_c
my_lovely_am suberb_carb_col
<dbl> <dbl>
1 1 4
2 1 4
3 1 1
4 0 1
5 0 2
6 0 1
7 0 4
8 0 2
9 0 2
10 0 4
# ... with 22 more rows
CodePudding user response:
We don't actually need to use purrr. dplyr can do this itself:
out <- trb %>%
rowwise %>%
mutate(dat_c = list(tibble(am = dat_a$am, carb = dat_b$carb))) %>%
ungroup
giving:
> out
# A tibble: 1 x 3
dat_a dat_b dat_c
<list> <list> <list>
1 <df [32 x 2]> <df [32 x 2]> <tibble [32 x 2]>
> str(out)
tibble [1 x 3] (S3: tbl_df/tbl/data.frame)
$ dat_a:List of 1
..$ :'data.frame': 32 obs. of 2 variables:
.. ..$ am : num [1:32] 1 1 1 0 0 0 0 0 0 0 ...
.. ..$ disp: num [1:32] 160 160 108 258 360 ...
$ dat_b:List of 1
..$ :'data.frame': 32 obs. of 2 variables:
.. ..$ mpg : num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
.. ..$ carb: num [1:32] 4 4 1 1 2 1 4 2 2 4 ...
$ dat_c:List of 1
..$ : tibble [32 x 2] (S3: tbl_df/tbl/data.frame)
.. ..$ am : num [1:32] 1 1 1 0 0 0 0 0 0 0 ...
.. ..$ carb: num [1:32] 4 4 1 1 2 1 4 2 2 4 ...