I have two dataset and produce bubble chart with ggplot. when I want to scale the point size, they do not stay consistent. for example circle with count of 3 is bigger thant ciricle with count size of 3 in df_table1.
df_table1:
Raw.data temporal.technique Counts
LMSdata clustering 3
LMSdata PM 3
LMSdata visualization 3
custLogData stat 2
learningProd stat 2
perfMeasures visualization 2
contextual clustering 1
contextual network 1
contextual TextMining 1
custLogData otherPred 1
df_table2:
Raw.data temporal.technique Counts
LMSdata clustering 15
LMSdata visualization 8
custLogData stat 7
learningProd stat 4
perfMeasures visualization 3
contextual clustering 1
contextual network 1
I tried this code but did not make point sizes consistent. using fix number like scale_size(range = c(1, 10)
did not work either.
ggplot(df_table, aes(x=df_table[,1], y=df_table[,2], size = Counts))
geom_text(data=df_table,aes(x=df_table[,1], y=df_table[,2],label= Counts,size=1.5))
scale_size(range = c(1, max(df_table$Counts)))
CodePudding user response:
Does this approach solve your problem?
library(tidyverse)
df_table1 <- read.table(text = " Raw.data temporal.technique Counts
LMSdata clustering 3
LMSdata PM 3
LMSdata visualization 3
custLogData stat 2
learningProd stat 2
perfMeasures visualization 2
contextual clustering 1
contextual network 1
contextual TextMining 1
custLogData otherPred 1", header = TRUE)
df_table2 <- read.table(text = " Raw.data temporal.technique Counts
LMSdata clustering 15
LMSdata visualization 8
custLogData stat 7
learningProd stat 4
perfMeasures visualization 3
contextual clustering 1
contextual network 1", header = TRUE)
# Combine df_table1 and df_table2 to a single df
df_table <- map_df(.x = list("df_table1" = df_table1,
"df_table2" = df_table2),
.f = bind_rows,
.id = "src")
# Plot them side-by-side using `facet_wrap()`
ggplot(df_table, aes(x=Raw.data, y=temporal.technique, size = Counts))
geom_text(aes(label = Counts))
scale_size(range = c(1, 10))
facet_wrap(~src)
Created on 2022-02-08 by the reprex package (v2.0.1)