I am trying to add two custom arrows with labels in a seaborn relplot graph. I tried using the matplot arrow function which is not working because the seaborne relplot is a "facetgrid". I did not see a specific arrow pointer function in seaborn docu. I want to draw an arrow at a specific x value between the y values of two benchmarks (b1 b2 in example)
Is there an easy way to do this? I added a simple code example, data and 2 images of what i try to achieve.
CODE:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import gc
import sys
if __name__ == '__main__':
pfad = sys.argv[1]
label = 'test'
df1 = pd.read_csv(pfad, sep=';')
sns_plot = sns.relplot(x="selectivity", ci=None, y="throughput", hue='benchmark', kind="line", data=df1,
dashes=False, markers=True, style="benchmark")
sns_plot.savefig(label ".png")
plt.savefig(label ".pdf", bbox_inches='tight')
plt.show()
DATASET (example.csv in same folder)
benchmark;selectivity;throughput
b1;0.01;1426.89
b2;0.01;531.434
b1;0.03;826.89
b2;0.03;531.434
b1;0.05;626.89
b2;0.05;520.434
Currently my Graph looks like this:
This is what I want to achieve:
CodePudding user response:
As mentioned in the comments, I flattened the axes, got the values from the line chart, and added text annotations and arrows respectively.
if __name__ == '__main__':
pfad = sys.argv[1]
label = 'test'
df1 = pd.read_csv(pfad, sep=';')
sns_plot = sns.relplot(x="selectivity", ci=None, y="throughput", hue='benchmark', kind="line", data=df1,
dashes=False, markers=True, style="benchmark")
xydata = []
for ax in sns_plot.axes.flat:
for li in ax.lines:
xydata.append(li.get_xydata())
ax.text(xydata[0][0][0] 0.001, (xydata[0][0][1] xydata[1][0][1])/2, '2.5X speedup')
ax.text(xydata[1][2][0] 0.001, (xydata[0][2][1] xydata[1][2][1])/2, '1.3X speedup')
ax.annotate('',
xy=(xydata[0][0][0], xydata[0][0][1]),
xytext=(xydata[0][0][0], xydata[1][0][1]),
xycoords='data',
arrowprops=dict(facecolor='black',width=2.0,headwidth=7.0,headlength=7.0,shrink=0.01))
ax.annotate('',
xy=(xydata[1][2][0], xydata[0][2][1]),
xytext=(xydata[1][2][0], xydata[1][2][1]),
xycoords='data',
arrowprops=dict(facecolor='black',width=2.0,headwidth=7.0,headlength=7.0,shrink=0.01))
#sns_plot.savefig(label ".png")
#plt.savefig(label ".pdf", bbox_inches='tight')
plt.show()