Suppose I have three functions foo
, bar
, baz
, all of which return nullable types.
fun foo(): Int? = 1
fun bar(): Int? = 2
fun baz(): Int? = 3
I want to call them, and if all them returns non-null, I want to compute a value from their return values.
I could do this with statements, like this:
val x = foo()
val y = bar()
val z = baz()
val result = if (x != null && y != null && z != null) x y z else null
However, I don't like the fact that I have to declare 3 extra variables that I can still access afterwards. By having 3 extra statements like this, it also means that I cannot use expression-bodied functions, if I were writing a function that returns result
.
If I use let
s instead:
val result = foo()?.let { x ->
bar()?.let { y ->
baz()?.let { z ->
x y z
}
}
}
This creates a deep nesting. If it were only one function, this would have been fine, but with 3 functions or more, this makes my intention of "call these three functions, if they are all non null, add them together" rather unclear.
How can I write this in a way that clearly conveys my intention, but also making it a single expression?
CodePudding user response:
If they are of different types, I think you need to write your own helper functions like these (different overloads needed for different numbers of parameters, because there's no other way for the compiler to know the types of the arguments):
inline fun <T : Any, U : Any, R> ifAllNotNull(t: T?, u: U?, block: (t: T, u: U) -> R): R? {
return when {
t != null && u != null -> block(t, u)
else -> null
}
}
inline fun <T : Any, U : Any, V : Any, R> ifAllNotNull(t: T?, u: U?, v: V?, block: (t: T, u: U, v: V) -> R): R? {
return when {
t != null && u != null && v != null -> block(t, u, v)
else -> null
}
}
val result = ifAllNotNull(foo(), bar(), baz()) { x, y, z -> x y z }
Note that all three parameters will be evaluated before any are checked for null.
Or if you want to do what you described (hiding the three variables after the result calculation) using just standard library functions, you can use run
to limit the scope of the temporary variables:
val result = run {
val x = foo()
val y = bar()
val z = baz()
if (x != null && y != null && z != null) x y z else null
}
This would also give you the opportunity to short-circuit if you like:
val result = run {
val x = foo() ?: return@run null
val y = bar() ?: return@run null
val z = baz() ?: return@run null
x y z
}
CodePudding user response:
You could filter out all null
-values and only apply an operation on the list, if it did not shrink in size, e.g.:
fun sumIfNoneNull(values: List<Int?>): Int? = values
.filterNotNull()
.takeIf { it.size == values.size }
?.sum()
One may generalize this further, e.g.:
fun <T, R> List<T>.foldIfNoneNull(
initial: R,
operation: (acc: R, T) -> R
): R? = this
.filterNotNull()
.takeIf { nonNullList -> nonNullList.size == this.size }
?.fold(initial, operation)
You may use this like any other fold
, e.g.:
listOf(foo(), bar(), baz()).foldIfNoneNull(0) { acc, cur -> acc cur }
CodePudding user response:
val result = listOf(foo(), bar(), baz())
.reduce { acc, i ->
when {
acc == null || i == null -> null
else -> acc i
}
}
Or as function:
fun <T> apply(operation: (T, T) -> T, vararg values: T?): T? {
return values
.reduce { acc, i ->
when {
acc == null || i == null -> null
else -> operation(acc, i)
}
}
}
val result = apply({ x, y -> x y }, foo(), bar(), baz())