I have a dataframe with this schema
root
|-- AUTHOR_ID: integer (nullable = false)
|-- NAME: string (nullable = true)
|-- Books: array (nullable = false)
| |-- element: struct (containsNull = false)
| | |-- BOOK_ID: integer (nullable = false)
| | |-- Chapters: array (nullable = true)
| | | |-- element: struct (containsNull = true)
| | | | |-- NAME: string (nullable = true)
| | | | |-- NUMBER_PAGES: integer (nullable = true)
How to flat all columns into one level with Pyspark ?
CodePudding user response:
Using inline
function:
df2 = (df.selectExpr("AUTHOR_ID", "NAME", "inline(Books)")
.selectExpr("*", "inline(Chapters)")
.drop("Chapters")
)
Or explode
:
from pyspark.sql import functions as F
df2 = (df.withColumn("Books", F.explode("Books"))
.select("*", "Books.*")
.withColumn("Chapters", F.explode("Chapters"))
.select("*", "Chapters.*")
)