I have an ODE which I would like to solve using compiled C code called from R's deSolve package. The ODE in question is I an exponential decay model (y'=-d* exp(g* time)*y): But running the compiled code from within R gives different results to R's native deSolve. It's as is there they are flipped 180º. What's going on?
C code implementation
/* file testODE.c */
#include <R.h>
static double parms[4];
#define C parms[0] /* left here on purpose */
#define d parms[1]
#define g parms[2]
/* initializer */
void initmod(void (* odeparms)(int *, double *))
{
int N=3;
odeparms(&N, parms);
}
/* Derivatives and 1 output variable */
void derivs (int *neq, double t, double *y, double *ydot,
double *yout, int *ip)
{
// if (ip[0] <1) error("nout should be at least 1");
ydot[0] = -d*exp(-g*t)*y[0];
}
/* END file testODEod.c */
R implementation - Native deSolve
testODE <- function(time_space, initial_contamination, parameters){
with(
as.list(c(initial_contamination, parameters)),{
dContamination <- -d*exp(-g*time_space)*Contamination
return(list(dContamination))
}
)
}
parameters <- c(C = -8/3, d = -10, g = 28)
Y=c(y=1200)
times <- seq(0, 6, by = 0.01)
initial_contamination=c(Contamination=1200)
out <- ode(initial_contamination, times, testODE, parameters, method = "radau",atol = 1e-4, rtol = 1e-4)
plot(out)
R implementation - Run compiled code from deSolve
library(deSolve)
library(scatterplot3d)
dyn.load("Code/testODE.so")
Y <-c(y1=initial_contamination) ;
out <- ode(Y, times, func = "derivs", parms = parameters,
dllname = "testODE", initfunc = "initmod")
plot(out)
CodePudding user response:
Compiled code does not give different results to deSolve models implemented in R, except potential rounding errors within the limits of atol
and rtol
.
The reasons of the differences in the original post where two errors in the code. One can correct it as follows:
- Declare
static double
asparms[3];
instead ofparms[4]
- Time
t
in derivs is a pointer, i.e.*t
so that the code reads as:
/* file testODE.c */
#include <R.h>
#include <math.h>
static double parms[3];
#define C parms[0] /* left here on purpose */
#define d parms[1]
#define g parms[2]
/* initializer */
void initmod(void (* odeparms)(int *, double *)) {
int N=3;
odeparms(&N, parms);
}
/* Derivatives and 1 output variable */
void derivs (int *neq, double *t, double *y, double *ydot,
double *yout, int *ip) {
ydot[0] = -d * exp(-g * *t) * y[0];
}
Here the comparison between the two simulations, somewhat adapted and generalized:
library(deSolve)
testODE <- function(t, y, parameters){
with(
as.list(c(y, parameters)),{
dContamination <- -d * exp(-g * t) * contamination
return(list(dContamination))
}
)
}
system("R CMD SHLIB testODE.c")
dyn.load("testODE.dll")
parameters <- c(c = -8/3, d = -10, g = 28)
Y <- c(contamination = 1200)
times <- seq(0, 6, by = 0.01)
out1 <- ode(Y, times, testODE,
parms = parameters, method = "radau", atol = 1e-4, rtol = 1e-4)
out2 <- ode(Y, times, func = "derivs", dllname = "testODE", initfunc = "initmod",
parms = parameters, method = "radau", atol = 1e-4, rtol = 1e-4)
plot(out1, out2) # no visible difference
summary(out1 - out2) # differences should be (close to) zero
dyn.unload("testODE.dll") # always unload before editing .c file !!
Note: set.dll
or .so
according to your OS, or detect it with .Platform$dynlib.ext
.