I have a DataFrame looking like:
gap_id | species | time_start | time_stop |
---|---|---|---|
1 | wheat | 2021-11-22 00:01:00 | 2021-11-22 00:03:00 |
2 | fescue | 2021-12-18 05:52:00 | 2021-12-18 05:53:00 |
I would like to expand the DataFrame such that I get as many rows as the number of minutes between time_start and time_stop for each gap_id:
gap_id | species | time |
---|---|---|
1 | wheat | 2021-11-22 00:01:00 |
1 | wheat | 2021-11-22 00:02:00 |
1 | wheat | 2021-11-22 00:03:00 |
2 | fescue | 2021-12-18 05:52:00 |
2 | fescue | 2021-12-18 05:53:00 |
I've tried the method pd.data_range
but I don't know how to couple it with a groupby
made on gap_id
Thanks in advance
CodePudding user response:
If small DataFrame and performance is not important generate for each row date_range
and then use DataFrame.explode
:
df['time'] = df.apply(lambda x: pd.date_range(x['time_start'], x['time_stop'], freq='T'), axis=1)
df = df.drop(['time_start','time_stop'], axis=1).explode('time')
print (df)
gap_id species time
0 1 wheat 2021-11-22 00:01:00
0 1 wheat 2021-11-22 00:02:00
0 1 wheat 2021-11-22 00:03:00
1 2 fescue 2021-12-18 05:52:00
1 2 fescue 2021-12-18 05:53:00
For large DataFrames repeat indices by difference start
and stop
columns in minutes first and then add counter by GroupBy.cumcount
with convert to timedeltas by to_timedelta
:
df['time_start'] = pd.to_datetime(df['time_start'])
df['time_stop'] = pd.to_datetime(df['time_stop'])
df = (df.loc[df.index.repeat(df['time_stop'].sub(df['time_start']).dt.total_seconds() // 60 1)]
.drop('time_stop', axis=1)
.rename(columns={'time_start':'time'}))
td = pd.to_timedelta(df.groupby(level=0).cumcount(), unit='Min')
df['time'] = td
df = df.reset_index(drop=True)
print (df)
gap_id species time
0 1 wheat 2021-11-22 00:01:00
1 1 wheat 2021-11-22 00:02:00
2 1 wheat 2021-11-22 00:03:00
3 2 fescue 2021-12-18 05:52:00
4 2 fescue 2021-12-18 05:53:00