I have a DataFrame where I want to drop a row (or rows) where more than one consecutive row has the same value for a column based on the value of a different column. In this instance, I want to keep the row with the highest value in B if high or the lowest if low. In essence, I'm trying to only have highs followed by lows and lows by highs.
df = pd.DataFrame({'A': ['low', 'high', 'high', 'low', 'low','low'],
'B': [10, 70, 90, 40, 50,60]})
Output:
A B
0 low 10
1 high 70
2 high 90
3 low 40
4 low 50
5 low 60
Desired:
A B
0 low 10
2 high 90
3 low 40
Trying to get my head around how to implement the logic and have run into a brick wall.
CodePudding user response:
Here is another way:
d = {'low':-1}
(df.assign(B = df['B'].mul(df['A'].map(d),fill_value=1))
.groupby(['A',pd.Series(pd.factorize(df['A'])[0]).diff().ne(0).cumsum()]).max()
.abs()
.sort_index(level=1)
.droplevel(1)
.reset_index())
Output:
A B
0 low 10.0
1 high 90.0
2 low 40.0
CodePudding user response:
Here's a quick and dirty way using groupby.apply
:
out = (df.groupby(['A', df['A'].ne(df['A'].shift()).cumsum()])
.apply(lambda x: x.max() if x['A'].iat[0]=='high' else x.min())
.droplevel(0).sort_index().reset_index(drop=True))
Another way could be to first find groupby
max
; then mask
the "low" values and replace them with groupby
min
values:
g = df.groupby(['A', df['A'].ne(df['A'].shift()).cumsum()], sort=False)['B']
out = g.max().mask(lambda x: x.index.get_level_values(0)=='low', g.min()).droplevel(1).reset_index()
Output:
A B
0 low 10
1 high 90
2 low 40