Home > Blockchain >  Filtering a dataframe column with another column in a separate dataframe
Filtering a dataframe column with another column in a separate dataframe

Time:04-01

I have a dataframe table (table_1) that contains 3 cloumns:

Iteam ID Date / time Date / time
12 2022-03-21 - 00:27:00 2022-03-21 - 00:28:00
99 2022-03-21 - 00:25:00 2022-03-21 - 00:26:00
34 2022-03-21 - 00:22:00 2022-03-21 - 00:23:00
28 2022-03-21 - 00:21:00 2022-03-21 - 00:23:00

I want to be able to filter the column Iteam Id with the data in another data-frame column (table_2).

Iteam Id
12
34
28

So the output would be:

Iteam ID Date / time Date / time
12 2022-03-21 - 00:27:00 2022-03-21 - 00:28:00
34 2022-03-21 - 00:22:00 2022-03-21 - 00:23:00
28 2022-03-21 - 00:21:00 2022-03-21 - 00:23:00

I have tryed creating a new dataframe using:

    new_df = table_1[table_1['Iteam ID'].isin(table_2)

But it is returning an empty dataframe, any help with this would be much appreciated!

CodePudding user response:

You should use the correct column instead of the whole dataframe:

new_df = table_1[table_1['Iteam ID'].isin(table_2['Iteam ID'].values)]

CodePudding user response:

Just merge (inner join) them :

out = df1.merge(df2, on='Iteam Id')
  • Related