I have dataframe which contains id
column with the following sample values
16620625 5686
16310427-5502
16501010 4957
16110430 8679
16990624/4174
16230404.1177
16820221/3388
I want to standardise to XXXXXXXX-XXXX (i.e. 8 and 4 digits separated by a dash), How can I achieve that using python.
here's my code
df['id']
df.replace(" ", "-")
CodePudding user response:
Can use DataFrame.replace() function using a regular expression like this:
df = df.replace(regex=r'^(\d{8})\D(\d{4})$', value=r'\1-\2')
Here's example code with sample data.
import pandas as pd
df = pd.DataFrame({'id': [
'16620625 5686',
'16310427-5502',
'16501010 4957',
'16110430 8679',
'16990624/4174',
'16230404.1177',
'16820221/3388']})
# normalize matching strings with 8-digits delimiter 4-digits
df = df.replace(regex=r'^(\d{8})\D(\d{4})$', value=r'\1-\2')
print(df)
Output:
id
0 16620625-5686
1 16310427-5502
2 16501010-4957
3 16110430-8679
4 16990624-4174
5 16230404-1177
6 16820221-3388
If any value does not match the regexp of the expected format then it's value will not be changed.
CodePudding user response:
inside a for loop:
- convert your data frame entry to a string.
- traverse this string up to 7th index.
- concatenate '-' after 7th index to the string.
- concatenate remaining string to the end.
- traverse to next data frame entry.
CodePudding user response:
If your 'id' is that structured, then you can slice the string like this:
df['ID2'] = df['ID'].str[:7] '-' df["ID"].str[9:]
Output:
ID ID2
0 16620625 5686 1662062-5686
1 16310427-5502 1631042-5502
2 16501010 4957 1650101-4957
3 16110430 8679 1611043-8679
4 16990624/4174 1699062-4174
5 16230404.1177 1623040-1177
6 16820221/3388 1682022-3388