Home > Blockchain >  Ordering a dataframe by string column indices
Ordering a dataframe by string column indices

Time:04-17

Within a function, I want to order a dataframe (generated within the function), by columns specified as function arguments.

Usually, I would order a dataframe like this:

data(mtcars)
mtcars <- mtcars[order(-mtcars$cyl, mtcars$mpg),]

or

data(mtcars)
attach(mtcars)
mtcars <- mtcars[order(-cyl, mpg),]

Now, I would like to pass 'cyl' and 'mpg' as arguments to the function:

example <- function( sort_columns = c('-cyl','mpg') ) {

    data(mtcars)
    mtcars <- mtcars[order( sort_columns ),]

}

Of course the above doesn't work. Is there an elegant method to achieve this?

Since I want to keep the code easily distributable, I want to stick to base R.

CodePudding user response:

We need do.call, select the columns of the data, and apply order with do.call

example <- function( sort_columns = c('cyl','mpg'), 
     is_decrease = c(FALSE, FALSE)  ) {

    data(mtcars)
    sub_mtcars <- mtcars[sort_columns]
    if(any(is_decrease)) {
       sub_mtcars[is_decrease] <- -1 * sub_mtcars[is_decrease]
     }
    mtcars[do.call(order, sub_mtcars ),]

}

-testing

> head(example(sort_columns = c('cyl', 'mpg')))
               mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Volvo 142E    21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Datsun 710    22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Merc 230      22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 240D     24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
> head(example(sort_columns = c('cyl', 'mpg'), c(TRUE, FALSE)))
                     mpg cyl disp  hp drat    wt  qsec vs am gear carb
Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
Maserati Bora       15.0   8  301 335 3.54 3.570 14.60  0  1    5    8

CodePudding user response:

An alternative would be to use non-standard evaluation to allow you to pass names directly:

example <- function(data, ... ) {
  data[do.call(order,
    lapply(as.list(match.call())[-c(1:2)], function(x) with(data, eval(x)))),]
}

This allows

example(mtcars, mpg, cyl)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1

And reversing would be like this:

example(mtcars, -mpg, -cyl)
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4

Created on 2022-04-16 by the reprex package (v2.0.1)

  •  Tags:  
  • r
  • Related