Home > Blockchain >  Splitting up a big data-frame into smaller subset column wise
Splitting up a big data-frame into smaller subset column wise

Time:04-20

I'm trying to run anova on multiple Principal component with different categorical as well continuous variables using all possible combination.

The dimensions of my data frame is

dim(tcga_mrna.pcs55)
[1] 147  67

The no of combination of models i have to test is this 112585

which was generated from this

frms <- with(expand.grid(dv, rhs), paste(Var1, Var2, sep = ' ~ '))

Now I tried to run it once It was stuck for quite a while so i had to abort it give my computational resources.

Therefore I think if I split my data frame into smaller data frame where I want to keep all the predictors constant but I would like to break the other columns into small subset.

My data small subset

 dput(head(tcga_mrna_pcs55))
structure(list(Sample_ID = c("TCGA-AB-2856", "TCGA-AB-2849", 
"TCGA-AB-2971", "TCGA-AB-2930", "TCGA-AB-2891", "TCGA-AB-2872"
), FAB = c("M4", "M0", "M4", "M2", "M1", "M3"), prior_malignancy = c("no", 
"no", "no", "no", "no", "no"), Age = c(63, 39, 76, 62, 42, 42
), BM_percentage = c(82, 83, 91, 72, 68, 88), Cytogenetic_Code = c("Normal Karyotype", 
"Complex Cytogenetics", "Normal Karyotype", "Normal Karyotype", 
"Complex Cytogenetics", "PML-RARA"), Histologic_Subtype = c("NUP98 Translocation", 
"Complex Cytogenetics", "Normal Karyotype", "NUP98 Translocation", 
"Complex Cytogenetics", "PML-RARA"), Risk_Cyto = c("Intermediate", 
"Poor", "Intermediate", "Intermediate", "Poor", "Good"), Risk_Molecular = c("Poor", 
"Poor", "Intermediate", "Poor", "Poor", "Good"), Sex = c("Male", 
"Male", "Female", "Female", "Male", "Male"), TMB = c(0, 0.733333333333, 
0.3, 0.266666666667, 0.466666666667, 0.333333333333), WBC = c(76.7, 
5, 5, 27.7, 10.7, 2.1), PC1 = c(-25.4243169876343, 38.5584419151387, 
-18.8838255683554, 3.773812175371, -5.02868029999407, 21.4658284982092
), PC2 = c(14.4895578447888, -27.8233346053999, -0.318074813205288, 
6.17043126174388, -9.29150756229324, 35.1156168048889), PC3 = c(-10.6509445605983, 
28.0996432599761, 5.88270605324811, -26.4971717145656, -0.896362785151599, 
23.2794429531062), PC4 = c(1.18248804745738, -21.0145760152975, 
-13.6652202316835, 4.64544888299446, 6.10552116611012, 1.085498115633
), PC5 = c(-14.8325881422899, 17.8653710387376, 8.90002489087104, 
-0.550793434039587, 5.90790796345414, 13.7446793572887), PC6 = c(0.695367268633542, 
-7.46255391237719, -9.48973541984696, 5.27626778248046, 2.85645531301921, 
-2.5417697261715), PC7 = c(-16.7000152968204, 14.3887321471474, 
16.0657716315069, -9.86610587188809, -8.27832660111485, -3.14876491002283
), PC8 = c(2.79822148585397, -6.63528657940777, -12.8725509038156, 
-2.17579923819722, -12.5781664467208, -2.90943809569856), PC9 = c(-7.05331558116121, 
-12.1985749853038, 4.10613337565274, -20.0374908146072, -13.4276520442583, 
-2.77032899744962), PC10 = c(13.2132444645362, -2.82152344784948, 
-8.00771994862333, 5.3333694628255, -6.78114804624295, -5.63354620465723
), PC11 = c(-1.79050241538047, -6.57822316228283, -4.20132241912175, 
4.51589800987586, -1.67953673784626, 3.75349242056027), PC12 = c(7.83152902157972, 
-19.5950183628134, -9.38164109885085, 16.3690122002304, 0.0735031667926224, 
2.32446981112219), PC13 = c(-5.25219547328429, -7.13380025578665, 
6.09600053996671, -7.11925980557811, -5.61967462665635, -9.80647746645279
), PC14 = c(1.45188764160216, -25.5978607332207, 18.3643001800981, 
4.7265900178811, -15.071134439125, 11.3956478391763), PC15 = c(-7.3393199774991, 
-33.112294903764, -4.10920083616075, -11.3366588668303, 2.5968258382962, 
14.4766162599917), PC16 = c(0.529278749351839, -20.0921377085554, 
9.88228975185339, -0.264632117869371, 4.39109257712349, 17.8403742741107
), PC17 = c(-5.79919206631477, -34.4597935232432, -0.284077310829092, 
-1.45723530362592, 8.066297152665, -4.36479763922708), PC18 = c(6.16739223066386, 
-0.668191107754327, 7.17864592583405, 1.10258322969635, -2.88635363509576, 
-3.55077626222531), PC19 = c(-2.46075725680638, 11.2317147986833, 
10.7210109810505, -1.86175537360617, 9.00649577117842, -5.20964171868026
), PC20 = c(0.447290924483848, 0.882697730068387, -1.64992531160428, 
3.69926682756107, -8.45636279736397, 12.0178514144455), PC21 = c(7.77512402052619, 
-13.723689855566, 0.929876575603838, 7.20400850159562, -0.614055839592973, 
-6.15633968149479), PC22 = c(-1.56535673338356, -13.2971868706006, 
1.87562172644287, -3.28771663165701, -5.64722916304599, 0.636358407474463
), PC23 = c(0.164107670637167, -15.2249958235848, 8.00555210033773, 
2.0662276295149, 7.73028430813706, -2.32179860594496), PC24 = c(-1.8934805361982, 
8.21971891071679, 3.08512611513449, -0.628702548440314, -0.233105377199397, 
2.87674317483379), PC25 = c(0.893451809081066, 6.60513492724147, 
8.88171627539804, 2.97249584622476, -17.4778489423161, -4.58539478100194
), PC26 = c(-1.32955071985976, 11.9145713692928, -3.79820868194203, 
4.91276198192432, 1.14456788292366, 9.69280466752626), PC27 = c(5.80488907470531, 
-9.84420624259338, 2.14543167774679, -3.04254310413812, 5.7902970935943, 
-3.75331337674036), PC28 = c(-8.18472344420157, 1.65255506997329, 
7.07760527456274, -6.32026527255729, -4.33442214041778, -6.65351307662841
), PC29 = c(1.75032780020844, 15.5611773097845, -2.52903882532741, 
2.53566972972068, 6.44542594461733, -2.73677227120317), PC30 = c(-0.862387620806526, 
-14.0405815436268, -7.08059737134561, -0.429947697667332, -4.93506927070922, 
-7.24877851150857), PC31 = c(5.04914290995488, 1.94876316261089, 
-1.44943546186944, 0.589695885543367, 7.55928674782029, -2.70932468259665
), PC32 = c(-0.331134735300882, 6.19579420256524, -1.11785338261286, 
-1.29691032897408, 20.2001081109543, 7.8570225951223), PC33 = c(4.89375087245026, 
6.48463626836495, 6.73612277868434, 4.24109357290756, 1.02817278604743, 
0.680027817141749), PC34 = c(-0.800041139194579, -1.88905732488826, 
1.7772915935601, -0.499932283505083, 10.7430548643924, -6.53775164240871
), PC35 = c(5.12118821250308, -3.98313005901599, -4.52005990894197, 
-3.07369863487262, 3.92078873433114, -2.18933519508166), PC36 = c(-2.54985917927219, 
-1.70921978278497, -2.44961274490961, 1.56802927495698, 7.08687990990386, 
-0.604700521943517), PC37 = c(5.1747232970747, -5.34247962945995, 
-1.83839184464979, 6.70262336281884, -1.10932786180704, -3.25652639774021
), PC38 = c(-4.18410989825183, -6.98950710609193, 0.866526234992652, 
-0.0950366191443256, 3.35399502292955, 2.90766983495248), PC39 = c(2.46730811173428, 
-0.455543469604487, -4.63050936679246, -1.34675190382428, -6.1200022250839, 
-3.40619104956874), PC40 = c(-0.731471474196848, -4.24515300461387, 
-3.43245666463953, 3.70020703587818, -8.76472221293956, -1.1281798870577
), PC41 = c(-3.79301551015471, -5.25686203441764, 6.76297802293118, 
-3.68970972173239, 4.35055761452324, -18.4180107861132), PC42 = c(4.83388024710314, 
-0.25083519933247, -3.21152818097955, 5.96597185780427, 4.19254774340514, 
-8.18426155110418), PC43 = c(-0.217047959384719, -1.13621909801165, 
-4.4592933756817, -6.96360564960356, 2.27400449542372, -2.86813634075033
), PC44 = c(-3.33545179774935, 6.11834882717519, -0.264585462886141, 
-7.6792938724774, -3.99915221656525, -2.5294702493956), PC45 = c(2.77954857939566, 
7.82470034842594, -3.52534065178766, -2.56221337540028, 7.09562358045148, 
-1.49373245991455), PC46 = c(-1.60423065922446, -0.428508391589366, 
4.03490498808649, 2.12844259167901, -1.3678347436909, -6.13180626071563
), PC47 = c(-3.20068124812043, 5.06644140525654, 7.37963017443048, 
-4.84325578581087, -17.680506272578, 0.560814898057312), PC48 = c(2.91858197345977, 
-1.11915083153502, 3.47278363466071, 1.21240736359339, -5.58511090848592, 
5.52652026954627), PC49 = c(3.84744380211926, 0.861663719832773, 
-1.40060221851844, 1.62791310594578, -2.52243080963911, 0.361029214307694
), PC50 = c(5.15785104158866, -0.319668135009027, 4.80115302565519, 
4.45746767521537, 2.76979916871901, -10.7678984312634), PC51 = c(-6.22760710964996, 
-3.55897006680048, -1.68421228474145, -1.51499187118043, 4.69802013777757, 
-7.25050359857057), PC52 = c(-2.26345921059907, 3.60461592062774, 
-1.37792205061882, 8.69053064558714, -10.7983766769631, -2.63687558522692
), PC53 = c(-1.65172511606967, 0.118920655863908, 6.29953754003559, 
-3.16092526827426, -3.64199764016276, -6.98013560579073), PC54 = c(6.17213064069784, 
3.78913668381605, 5.94121227070784, 1.6838389802013, 2.47727981128471, 
1.71804579216696), PC55 = c(-3.7893860872842, -0.325634230487849, 
-5.98312342448493, -5.37971579967361, -6.71876005026094, -4.19058766854014
)), row.names = c(NA, -6L), class = c("tbl_df", "tbl", "data.frame"
))

So here the first 12 columns I want to keep constant while adding PC1 to PC10 in my first subset. Similarly I would keep the first 12 again constant then add PC11 to PC20 , this way small subset of data-frame till my last column with first 11 such as this as constant for each subset of dataframe.

[1] "FAB"                "prior_malignancy"   "Age"                "BM_percentage"      "Cytogenetic_Code"   "Histologic_Subtype"
 [7] "Risk_Cyto"          "Risk_Molecular"     "Sex"                "TMB"                "WBC" 

Sample_ID FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code Histologic_Subt… Risk_Cyto Risk_Molecular Sex     TMB   WBC    PC1     PC2
  <chr>     <chr> <chr>            <dbl>         <dbl> <chr>            <chr>            <chr>     <chr>          <chr> <dbl> <dbl>  <dbl>   <dbl>
1 TCGA-AB-… M4    no                  63            82 Normal Karyotype NUP98 Transloca… Intermed… Poor           Male  0      76.7 -25.4   14.5  
2 TCGA-AB-… M0    no                  39            83 Complex Cytogen… Complex Cytogen… Poor      Poor           Male  0.733   5    38.6  -27.8  
3 TCGA-AB-… M4    no                  76            91 Normal Karyotype Normal Karyotype Intermed… Intermediate   Fema… 0.3     5   -18.9   -0.318
4 TCGA-AB-… M2    no                  62            72 Normal Karyotype NUP98 Transloca… Intermed… Poor           Fema… 0.267  27.7   3.77   6.17 
5 TCGA-AB-… M1    no                  42            68 Complex Cytogen… Complex Cytogen… Poor      Poor           Male  0.467  10.7  -5.03  -9.29 
6 TCGA-AB-… M3    no                  42            88 PML-RARA         PML-RARA         Good      Good           Male  0.333   2.1  21.5   35.1 

My objective is to run to run this since with such huge no of combination its taking a lot of time, so in a crude way i thought if the data frame can be split it would be easier to run. If there is faster way to execute the below code i would be glad to know.

Any help or suggestion are really appreciated.

models <- lapply(frms, function(x) anova(lm(x, data = tcga_mrna.pcs55)))

CodePudding user response:

Here is a try! I searched a lot but was not able to find a simple solution So this is a sugesstion how you could bring your shorter dataframes in a list. It is tedious but once you got a list, you could apply your operations to each element of the list:

The nearest solution I found was here: R: Splitting dataframe columnwise. But here only one column is added to the constant columns!

library(dplyr)

col1_12 <- df %>% 
  select(1:12)

PC1_PC10 <- df %>% 
  select(1, 13:22) %>% 
  right_join(col1_12, by = "Sample_ID")
PC11_PC20 <- df %>% 
  select(1, 23:32) %>% 
  right_join(col1_12, by = "Sample_ID")
PC21_PC30 <- df %>% 
  select(1, 33:42) %>% 
  right_join(col1_12, by = "Sample_ID")
PC31_PC40 <- df %>% 
  select(1, 43:52) %>% 
  right_join(col1_12, by = "Sample_ID")
PC41_PC50 <- df %>% 
  select(1, 53:62) %>% 
  right_join(col1_12, by = "Sample_ID")
PC51_PC55 <- df %>% 
  select(1, 63:67) %>% 
  right_join(col1_12, by = "Sample_ID")

list_of_dfs <- list(PC1_PC10, PC11_PC20, PC21_PC30,
                    PC31_PC41, PC41_PC50, PC51_PC55)

list_of_dfs

output:

> list_of_dfs
[[1]]
# A tibble: 6 x 22
  Sample_ID       PC1     PC2     PC3    PC4     PC5    PC6    PC7    PC8    PC9  PC10 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype  Risk_Cyto Risk_Molecular Sex     TMB   WBC
  <chr>         <dbl>   <dbl>   <dbl>  <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>               <chr>     <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856 -25.4   14.5   -10.7     1.18 -14.8    0.695 -16.7    2.80  -7.05 13.2  M4    no                  63            82 Normal Karyotype     NUP98 Translocation Intermed~ Poor           Male  0      76.7
2 TCGA-AB-2849  38.6  -27.8    28.1   -21.0   17.9   -7.46   14.4   -6.64 -12.2  -2.82 M0    no                  39            83 Complex Cytogenetics Complex Cytogeneti~ Poor      Poor           Male  0.733   5  
3 TCGA-AB-2971 -18.9   -0.318   5.88  -13.7    8.90  -9.49   16.1  -12.9    4.11 -8.01 M4    no                  76            91 Normal Karyotype     Normal Karyotype    Intermed~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930   3.77   6.17  -26.5     4.65  -0.551  5.28   -9.87  -2.18 -20.0   5.33 M2    no                  62            72 Normal Karyotype     NUP98 Translocation Intermed~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891  -5.03  -9.29   -0.896   6.11   5.91   2.86   -8.28 -12.6  -13.4  -6.78 M1    no                  42            68 Complex Cytogenetics Complex Cytogeneti~ Poor      Poor           Male  0.467  10.7
6 TCGA-AB-2872  21.5   35.1    23.3     1.09  13.7   -2.54   -3.15  -2.91  -2.77 -5.63 M3    no                  42            88 PML-RARA             PML-RARA            Good      Good           Male  0.333   2.1

[[2]]
# A tibble: 6 x 22
  Sample_ID     PC11     PC12  PC13   PC14   PC15    PC16    PC17   PC18  PC19   PC20 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto Risk_Molecular Sex     TMB   WBC
  <chr>        <dbl>    <dbl> <dbl>  <dbl>  <dbl>   <dbl>   <dbl>  <dbl> <dbl>  <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>     <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856 -1.79   7.83   -5.25   1.45  -7.34   0.529  -5.80   6.17  -2.46  0.447 M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Male  0      76.7
2 TCGA-AB-2849 -6.58 -19.6    -7.13 -25.6  -33.1  -20.1   -34.5   -0.668 11.2   0.883 M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.733   5  
3 TCGA-AB-2971 -4.20  -9.38    6.10  18.4   -4.11   9.88   -0.284  7.18  10.7  -1.65  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermed~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930  4.52  16.4    -7.12   4.73 -11.3   -0.265  -1.46   1.10  -1.86  3.70  M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891 -1.68   0.0735 -5.62 -15.1    2.60   4.39    8.07  -2.89   9.01 -8.46  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.467  10.7
6 TCGA-AB-2872  3.75   2.32   -9.81  11.4   14.5   17.8    -4.36  -3.55  -5.21 12.0   M3    no                  42            88 PML-RARA             PML-RARA             Good      Good           Male  0.333   2.1

[[3]]
# A tibble: 6 x 22
  Sample_ID       PC21    PC22    PC23   PC24    PC25  PC26  PC27  PC28  PC29    PC30 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto Risk_Molecular Sex     TMB   WBC
  <chr>          <dbl>   <dbl>   <dbl>  <dbl>   <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>     <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856   7.78   -1.57    0.164 -1.89    0.893 -1.33  5.80 -8.18  1.75  -0.862 M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Male  0      76.7
2 TCGA-AB-2849 -13.7   -13.3   -15.2    8.22    6.61  11.9  -9.84  1.65 15.6  -14.0   M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.733   5  
3 TCGA-AB-2971   0.930   1.88    8.01   3.09    8.88  -3.80  2.15  7.08 -2.53  -7.08  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermed~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930   7.20   -3.29    2.07  -0.629   2.97   4.91 -3.04 -6.32  2.54  -0.430 M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermed~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891  -0.614  -5.65    7.73  -0.233 -17.5    1.14  5.79 -4.33  6.45  -4.94  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor      Poor           Male  0.467  10.7
6 TCGA-AB-2872  -6.16    0.636  -2.32   2.88   -4.59   9.69 -3.75 -6.65 -2.74  -7.25  M3    no                  42            88 PML-RARA             PML-RARA             Good      Good           Male  0.333   2.1

[[4]]
# A tibble: 6 x 25
  Sample_ID      PC31   PC32  PC33   PC34  PC35   PC36  PC37    PC38   PC39   PC40   PC41   PC42   PC43 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code   Histologic_Subt~ Risk_Cyto Risk_Molecular Sex  
  <chr>         <dbl>  <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <chr> <chr>            <dbl>         <dbl> <chr>              <chr>            <chr>     <chr>          <chr>
1 TCGA-AB-2856  5.05  -0.331 4.89  -0.800  5.12 -2.55   5.17 -4.18    2.47  -0.731  -3.79  4.83  -0.217 M4    no                  63            82 Normal Karyotype   NUP98 Transloca~ Intermed~ Poor           Male 
2 TCGA-AB-2849  1.95   6.20  6.48  -1.89  -3.98 -1.71  -5.34 -6.99   -0.456 -4.25   -5.26 -0.251 -1.14  M0    no                  39            83 Complex Cytogenet~ Complex Cytogen~ Poor      Poor           Male 
3 TCGA-AB-2971 -1.45  -1.12  6.74   1.78  -4.52 -2.45  -1.84  0.867  -4.63  -3.43    6.76 -3.21  -4.46  M4    no                  76            91 Normal Karyotype   Normal Karyotype Intermed~ Intermediate   Fema~
4 TCGA-AB-2930  0.590 -1.30  4.24  -0.500 -3.07  1.57   6.70 -0.0950 -1.35   3.70   -3.69  5.97  -6.96  M2    no                  62            72 Normal Karyotype   NUP98 Transloca~ Intermed~ Poor           Fema~
5 TCGA-AB-2891  7.56  20.2   1.03  10.7    3.92  7.09  -1.11  3.35   -6.12  -8.76    4.35  4.19   2.27  M1    no                  42            68 Complex Cytogenet~ Complex Cytogen~ Poor      Poor           Male 
6 TCGA-AB-2872 -2.71   7.86  0.680 -6.54  -2.19 -0.605 -3.26  2.91   -3.41  -1.13  -18.4  -8.18  -2.87  M3    no                  42            88 PML-RARA           PML-RARA         Good      Good           Male 
# ... with 2 more variables: TMB <dbl>, WBC <dbl>

[[5]]
# A tibble: 6 x 22
  Sample_ID      PC41   PC42   PC43   PC44  PC45   PC46    PC47  PC48   PC49    PC50 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto  Risk_Molecular Sex     TMB   WBC
  <chr>         <dbl>  <dbl>  <dbl>  <dbl> <dbl>  <dbl>   <dbl> <dbl>  <dbl>   <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>      <chr>          <chr> <dbl> <dbl>
1 TCGA-AB-2856  -3.79  4.83  -0.217 -3.34   2.78 -1.60   -3.20   2.92  3.85    5.16  M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermedi~ Poor           Male  0      76.7
2 TCGA-AB-2849  -5.26 -0.251 -1.14   6.12   7.82 -0.429   5.07  -1.12  0.862  -0.320 M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor       Poor           Male  0.733   5  
3 TCGA-AB-2971   6.76 -3.21  -4.46  -0.265 -3.53  4.03    7.38   3.47 -1.40    4.80  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermedi~ Intermediate   Fema~ 0.3     5  
4 TCGA-AB-2930  -3.69  5.97  -6.96  -7.68  -2.56  2.13   -4.84   1.21  1.63    4.46  M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermedi~ Poor           Fema~ 0.267  27.7
5 TCGA-AB-2891   4.35  4.19   2.27  -4.00   7.10 -1.37  -17.7   -5.59 -2.52    2.77  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor       Poor           Male  0.467  10.7
6 TCGA-AB-2872 -18.4  -8.18  -2.87  -2.53  -1.49 -6.13    0.561  5.53  0.361 -10.8   M3    no                  42            88 PML-RARA             PML-RARA             Good       Good           Male  0.333   2.1

[[6]]
# A tibble: 6 x 17
  Sample_ID     PC51   PC52   PC53  PC54   PC55 FAB   prior_malignancy   Age BM_percentage Cytogenetic_Code     Histologic_Subtype   Risk_Cyto    Risk_Molecular Sex      TMB   WBC
  <chr>        <dbl>  <dbl>  <dbl> <dbl>  <dbl> <chr> <chr>            <dbl>         <dbl> <chr>                <chr>                <chr>        <chr>          <chr>  <dbl> <dbl>
1 TCGA-AB-2856 -6.23  -2.26 -1.65   6.17 -3.79  M4    no                  63            82 Normal Karyotype     NUP98 Translocation  Intermediate Poor           Male   0      76.7
2 TCGA-AB-2849 -3.56   3.60  0.119  3.79 -0.326 M0    no                  39            83 Complex Cytogenetics Complex Cytogenetics Poor         Poor           Male   0.733   5  
3 TCGA-AB-2971 -1.68  -1.38  6.30   5.94 -5.98  M4    no                  76            91 Normal Karyotype     Normal Karyotype     Intermediate Intermediate   Female 0.3     5  
4 TCGA-AB-2930 -1.51   8.69 -3.16   1.68 -5.38  M2    no                  62            72 Normal Karyotype     NUP98 Translocation  Intermediate Poor           Female 0.267  27.7
5 TCGA-AB-2891  4.70 -10.8  -3.64   2.48 -6.72  M1    no                  42            68 Complex Cytogenetics Complex Cytogenetics Poor         Poor           Male   0.467  10.7
6 TCGA-AB-2872 -7.25  -2.64 -6.98   1.72 -4.19  M3    no                  42            88 PML-RARA             PML-RARA             Good         Good           Male   0.333   2.1

  • Related