I want to represent my data in the form of a bar plot as shown on my expected output.
time,date,category
0,2002-05-01,2
1,2002-05-02,0
2,2002-05-03,0
3,2002-05-04,0
4,2002-05-05,0
5,2002-05-06,0
6,2002-05-07,0
7,2002-05-08,2
8,2002-05-09,2
9,2002-05-10,0
10,2002-05-11,2
11,2002-05-12,0
12,2002-05-13,0
13,2002-05-14,2
14,2002-05-15,2
15,2002-05-16,2
16,2002-05-17,2
17,2002-05-18,2
18,2002-05-19,0
19,2002-05-20,0
20,2002-05-21,1
21,2002-05-22,2
22,2002-05-23,0
23,2002-05-24,1
24,2002-05-25,0
25,2002-05-26,0
26,2002-05-27,0
27,2002-05-28,0
28,2002-05-29,1
29,2002-05-30,0
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
df = pd.read_csv('df.csv')
daily_category = df[['date','category']]
daily_category['weekday'] = pd.to_datetime(daily_category['date']).dt.day_name()
daily_category_plot = daily_category[['weekday','category']]
daily_category_plot[['category']].groupby('weekday').count().plot(kind='bar', legend=None)
plt.show()
However, I get the below error
Traceback (most recent call last): File "day_plot.py", line 10, in daily_category_plot[['category']].groupby('weekday').count().plot(kind='bar', legend=None) File "/home/..../.local/lib/python3.6/site-packages/pandas/core/frame.py", line 6525, in groupby dropna=dropna, File "/home/..../.local/lib/python3.6/site-packages/pandas/core/groupby/groupby.py", line 533, in init dropna=self.dropna, File "/home/..../.local/lib/python3.6/site-packages/pandas/core/groupby/grouper.py", line 786, in get_grouper raise KeyError(gpr) KeyError: 'weekday'
********** A further example below where I manually extract data below returns almost the expected output except that the days are represented as numbers instead of weekday names. ***********
Day,category1,category2,category3
Sunday,0,0,4
Monday,0,0,4
Tuesday,1,1,2
Wednesday,1,4,0
Thursday,0,2,3
Friday,1,1,2
Saturday,0,2,2
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv('df.csv')
ax = df.plot.bar(stacked=True, color=['green', 'red', 'blue'])
ax.set_xticklabels(labels=df.index, rotation=70, rotation_mode="anchor", ha="right")
ax.set_xlabel('')
ax.set_ylabel('Number of days')
plt.show()
CodePudding user response:
import pandas as pd
import matplotlib.pyplot as plt
d = """0,2002-05-01,2 1,2002-05-02,0 2,2002-05-03,0 3,2002-05-04,0 4,2002-05-05,0 5,2002-05-06,0 6,2002-05-07,0 7,2002-05-08,2 8,2002-05-09,2 9,2002-05-10,0 10,2002-05-11,2 11,2002-05-12,0 12,2002-05-13,0 13,2002-05-14,2 14,2002-05-15,2 15,2002-05-16,2 16,2002-05-17,2 17,2002-05-18,2 18,2002-05-19,0 19,2002-05-20,0 20,2002-05-21,1 21,2002-05-22,2 22,2002-05-23,0 23,2002-05-24,1 24,2002-05-25,0 25,2002-05-26,0 26,2002-05-27,0 27,2002-05-28,0 28,2002-05-29,1 29,2002-05-30,0"""
df = pd.DataFrame([v.split(',') for v in d.split(' ')], columns=['time', 'date', 'category'])
df.time, df.category = df.time.astype(int), df.category.astype(int)
data = df.copy()
data['weekday'] = pd.to_datetime(data['date']).dt.day_name()
data.drop(columns=['time', 'date'], inplace=True)
weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
categories = sorted(list(set(df.category)))
counts = pd.DataFrame(0, index=weekdays, columns=categories)
for weekday, category in zip(data.weekday, data.category):
counts.loc[weekday, category] = 1
counts.plot.bar(stacked=True);
CodePudding user response:
This solution uses groupby
on to columns and transforms the returned Dataframe using pivot
. This can be plotted by plot.bar()
but has the wrong labels. Therefor the index is changed.
ans = (df.groupby(["weekday", "category"])
.size()
.reset_index(name="sum")
.pivot(index='weekday', columns='category', values='sum')
)
ans.index = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
ans.plot.bar(stacked=True)