I want to tidy up a dataframe and automate the process. Given the following data.frame
:
library(survival)
library(rms)
library(broom)
library(tidyverse)
res.cox <- coxph(Surv(time, status) ~ rcs(age, 3) sex ph.ecog
rcs(meal.cal, 4), data = lung)
output <- tidy(res.cox)
output
# term estimate std.error statistic p.value
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 rcs(age, 3)age -0.00306 0.0219 -0.140 0.889
# 2 rcs(age, 3)age' 0.0154 0.0261 0.592 0.554
# 3 sex -0.525 0.192 -2.74 0.00620
# 4 ph.ecog 0.421 0.131 3.22 0.00128
# 5 rcs(meal.cal, 4)meal.cal -0.000416 0.00104 -0.400 0.689
# 6 rcs(meal.cal, 4)meal.cal' 0.00118 0.00232 0.509 0.611
# 7 rcs(meal.cal, 4)meal.cal'' -0.00659 0.0114 -0.577 0.564
I want to remove the rcs-spline information from term
variable and be left with:
# term estimate std.error statistic p.value
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 s1 age -0.00306 0.0219 -0.140 0.889
# 2 s2 age 0.0154 0.0261 0.592 0.554
# 3 sex -0.525 0.192 -2.74 0.00620
# 4 ph.ecog 0.421 0.131 3.22 0.00128
# 5 s1 meal.cal -0.000416 0.00104 -0.400 0.689
# 6 s2 meal.cal 0.00118 0.00232 0.509 0.611
# 7 s3 meal.cal -0.00659 0.0114 -0.577 0.564
I want the solution to easily work for other cases too so when you increase the number of knots:
res.cox2 <- coxph(Surv(time, status) ~ rcs(age, 4) rcs(meal.cal, 6)
sex ph.ecog, data = lung)
output2 <- tidy(res.cox2)
output2
# term estimate std.error statistic p.value
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 rcs(age, 4)age 0.0419 0.0403 1.04 0.298
# 2 rcs(age, 4)age' -0.101 0.0806 -1.26 0.208
# 3 rcs(age, 4)age'' 0.569 0.388 1.47 0.142
# 4 rcs(meal.cal, 6)meal.cal -0.000974 0.00155 -0.631 0.528
# 5 rcs(meal.cal, 6)meal.cal' 0.00751 0.0115 0.655 0.512
# 6 rcs(meal.cal, 6)meal.cal'' -0.0217 0.0358 -0.607 0.544
# 7 rcs(meal.cal, 6)meal.cal''' 0.0614 0.123 0.501 0.616
# 8 rcs(meal.cal, 6)meal.cal'''' -0.0775 0.163 -0.475 0.634
# 9 sex -0.552 0.195 -2.83 0.00465
# 10 ph.ecog 0.440 0.132 3.34 0.000835
you would be left with:
# term estimate std.error statistic p.value
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 s1 age 0.0419 0.0403 1.04 0.298
# 2 s2 age -0.101 0.0806 -1.26 0.208
# 3 s3 age 0.569 0.388 1.47 0.142
# 4 s1 meal.cal -0.000974 0.00155 -0.631 0.528
# 5 s2 meal.cal 0.00751 0.0115 0.655 0.512
# 6 s3 meal.cal -0.0217 0.0358 -0.607 0.544
# 7 s4 meal.cal 0.0614 0.123 0.501 0.616
# 8 s5 meal.cal -0.0775 0.163 -0.475 0.634
# 9 sex -0.552 0.195 -2.83 0.00465
# 10 ph.ecog 0.440 0.132 3.34 0.000835
etc...
My attempt so far gets me some of the way but I am not sure of the best way to deal with the '
, ''
(note the first term does not contain a '
) etc.:
output %>%
mutate(rcs_indicator = str_detect(term, fixed("rcs(")),
term = str_replace_all(term, "rcs\\(. ?\\)", ""))
# term estimate std.error statistic p.value rcs_indicator
# <chr> <dbl> <dbl> <dbl> <dbl> <lgl>
# 1 age -0.00306 0.0219 -0.140 0.889 TRUE
# 2 age' 0.0154 0.0261 0.592 0.554 TRUE
# 3 sex -0.525 0.192 -2.74 0.00620 FALSE
# 4 ph.ecog 0.421 0.131 3.22 0.00128 FALSE
# 5 meal.cal -0.000416 0.00104 -0.400 0.689 TRUE
# 6 meal.cal' 0.00118 0.00232 0.509 0.611 TRUE
# 7 meal.cal'' -0.00659 0.0114 -0.577 0.564 TRUE
It might be useful to just work with the terms I need to change directly:
unique(str_subset(output$term, fixed("rcs(")) %>%
str_replace_all("'", ""))
# [1] "rcs(age, 3)age" "rcs(meal.cal, 4)meal.cal"
I feel there is a way to do this in a simpler way than the steps I am doing.
Any suggestions?
Thanks
CodePudding user response:
This one is clunky but it should work:
library(dplyr)
library(stringr)
output %>%
group_by(group =str_extract(term, 'rcs\\(.')) %>%
mutate(row = row_number()) %>%
mutate(term = str_replace_all(term, 'rcs\\(', paste0("s",row, " "))) %>%
mutate(term = ifelse(str_detect(term, 's\\d'),
str_extract(term, '.\\d\\s.*\\s'), term)) %>%
mutate(term = str_trim(term)) %>%
mutate(term = str_replace_all(term, '\\,', '')) %>%
ungroup() %>%
select(-c(group, row))
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 s1 age -0.00306 0.0219 -0.140 0.889
2 s2 age 0.0154 0.0261 0.592 0.554
3 sex -0.525 0.192 -2.74 0.00620
4 ph.ecog 0.421 0.131 3.22 0.00128
5 s1 meal.cal -0.000416 0.00104 -0.400 0.689
6 s2 meal.cal 0.00118 0.00232 0.509 0.611
7 s3 meal.cal -0.00659 0.0114 -0.577 0.564
CodePudding user response:
This is also less elegant than desired, but should work for multiple knots
output %>%
mutate(is_spline = grepl("^rcs\\(.*?, \\d\\)", term),
n_term = str_count(term, "'") 1,
pre = ifelse(is_spline, paste0('s', n_term, ' '), ""),
term = paste0(pre, gsub("(^rcs\\(.*?, \\d\\))|(\\' $)", "", term))) %>%
select(-is_spline, -n_term, -pre)
#> # A tibble: 7 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 s1 age -0.00306 0.0219 -0.140 0.889
#> 2 s2 age 0.0154 0.0261 0.592 0.554
#> 3 sex -0.525 0.192 -2.74 0.00620
#> 4 ph.ecog 0.421 0.131 3.22 0.00128
#> 5 s1 meal.cal -0.000416 0.00104 -0.400 0.689
#> 6 s2 meal.cal 0.00118 0.00232 0.509 0.611
#> 7 s3 meal.cal -0.00659 0.0114 -0.577 0.564