I have the script below that generates a plot consisted of 5 histograms (5 subplots) :
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
from scipy.optimize import curve_fit
mean_o = list()
sigma_o = list()
y3 = list()
### generate some data
for i in range( 5 ):
y3.append( norm.rvs( size=150000 ) )
y3 = np.transpose( y3 )
for i in range(5):
mean_o.append( np.mean( y3[ :, i ] ) )
sigma_o.append( np.std( y3[ :, i ] ) )
## Histograms
# Number of bins
Nbins=100
binwidth = np.zeros(5)
# Fitting curves
def gaussian( x, a , mean, sigma ):
return a * np.exp( -( ( x - mean )**2 / (2 * sigma**2 ) ) )
fig = plt.figure()
ax = { i : fig.add_subplot( 2, 3, i 1) for i in range( 5 ) }
for i in range(5):
ymin = min(y3[:,i])
ymax = max(y3[:,i])
binwidth[i] = ( ymax - ymin) / Nbins
bins_plot = np.arange( ymin, ymax binwidth[i], binwidth[i])
histdata = ax[i].hist(
y3[:,i],
bins=bins_plot,
label='bin ' str(i)
)
range_fit = np.linspace( ymin, ymax, 250)
# Fitting and plot version 1
popt, pcov = curve_fit(
gaussian,
0.5 * ( histdata[1][:-1] histdata[1][1:] ),
histdata[0],
p0=( max(histdata[0]), mean_o[i], sigma_o[i] ) )
ax[i].plot(range_fit, gaussian( range_fit, *popt ) )
ax[i].axvline( x=mean_o[i], ls=':', c='r' )
# Fitting and plot version 2
params = norm.fit( y3[ ::, i ], loc=mean_o[i], scale=sigma_o[i] )
nth = gaussian(
range_fit,
len( y3[::, i]) * binwidth[i] / np.sqrt( 2 * np.pi ),
*params
)
ax[i].plot(range_fit, nth, ls="--" )
plt.tight_layout()
plt.show()
that generates the following figure :
Now, I would like to use in the 6th subplot on the right bottom as a legend for the 5 other subplots where the best fit values appear with a corresponding box and value to each subplot (like a color code) :
I don't know at all how to use a subplot as a legend, Does anyone get an idea ?
CodePudding user response: