I have the dataset as coded below. For a specific set of treatment pair, year, month, level, I have assigned a unique ID
. Ideally, a compelete "set" has two rows corresponding to the same unique ID. If it does not, I want to eliminate those rows.
So here, all "sets" of two sets of unique ID, except that corresponding to ID 2
. How do In my original dataset, I have thousands such rows. How can I scan to remove these singeltons?
tmt.pair <- c("A","A","A","B","B","B","B")
tmt <- c("1000 C","4000 C","1000 C","1000 C","4000 C","1000 C","4000 C")
year <- c("2021","2021","2021","2021","2021","2020","2020")
month <- c("A","A","A","J","J","O","O")
level <- c("Low","Low","Up","Low","Low","Low","Low")
site <- c(1,1,2,1,1,1,1)
val <- rnorm(7,5,1)
df <- data.frame(tmt.pair, year,month, level,tmt,val)
df$ID <- cumsum(!duplicated(df[1:4]))
tmt.pair year month level tmt val ID
1 A 2021 A Low 1000 C 4.789715 1
2 A 2021 A Low 4000 C 6.451113 1
3 A 2021 A Up 1000 C 4.281171 2
4 B 2021 J Low 1000 C 5.176668 3
5 B 2021 J Low 4000 C 6.384432 3
6 B 2020 O Low 1000 C 4.833731 4
7 B 2020 O Low 4000 C 3.274355 4
CodePudding user response:
Using base R you can do this:
tab=table(df$ID)
df[ifelse(tab[df$ID]==1, FALSE, TRUE),]
Output:
tmt.pair year month level tmt val ID
1 A 2021 A Low 1000 C 5.156294 1
2 A 2021 A Low 4000 C 4.395990 1
4 B 2021 J Low 1000 C 5.714170 3
5 B 2021 J Low 4000 C 6.075886 3
6 B 2020 O Low 1000 C 7.249756 4
7 B 2020 O Low 4000 C 5.197891 4
CodePudding user response:
Another option using data.table
:
library(data.table)
setDT(df)[,if(.N > 1) .SD, by=ID]
Output
ID tmt.pair year month level tmt val
1: 1 A 2021 A Low 1000 C 4.424811
2: 1 A 2021 A Low 4000 C 4.556058
3: 3 B 2021 J Low 1000 C 4.396996
4: 3 B 2021 J Low 4000 C 3.906065
5: 4 B 2020 O Low 1000 C 5.714706
6: 4 B 2020 O Low 4000 C 4.891188
Or with dplyr
, where we only keep ID
s that have more than 1 observation:
library(dplyr)
df %>%
group_by(ID) %>%
filter(n() > 1)