Home > Blockchain >  Merge two rows pandas dataframe
Merge two rows pandas dataframe

Time:05-17

enter image description here

I have this data, and I need to merge the two selected columns with the other row because its duplicated rows cames from my code.

So, how could I do this?

CodePudding user response:

Here is a way to do what your question asks:

df[['State_new', 'Solution_new']] = df[['Power State', 'Recommended Solution']].shift()
mask = ~df['State_new'].isna()
df.loc[mask, 'State'] = df.loc[mask, 'State_new']
df.loc[mask, 'Recommended Solutuin'] = df.loc[mask, 'Solution_new']
df = df.drop(columns=['State_new', 'Solution_new', 'Power State', 'Recommended Solution'])[~df['State'].isna()].reset_index(drop=True)

Explanation:

  • create versions of the important data from your code shifted down by one row
  • create a boolean mask indicating which of these shifted rows are not empty
  • use this mask to overwrite the content of the State and Recommended Solutuin columns (NOTE: using original column labels verbatim from OP's question) with the updated data from your code contained in the shifted columns
  • drop the columns used to perform the update as they are no longer needed
  • use reset_index to create a new integer range index without gaps.

In case it's helpful, here is sample code to pull the dataframe in from Excel:

import pandas as pd
df = pd.read_excel('TestBook.xlsx', sheet_name='TestSheet', usecols='AD:AM')

Here's the input dataframe:

         MAC       RLC     RLC 2  PDCCH Down  PDCCH Uplink  Unnamed: 34 Recommended Solutuin                         State Power State Recommended Solution
0   122.9822  7119.503  125.7017    1186.507      784.9464          NaN    Downtitlt antenna  serving cell is overshooting         NaN                  NaN
1     4.1000  7119.503   24.0000      11.000       51.0000          NaN    Downtitlt antenna  serving cell is overshooting         NaN                  NaN
2   121.8900  2127.740  101.3300    1621.000      822.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
3    86.5800  2085.250   94.6400    1650.000      880.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
4    64.7500  1873.540   63.8600    1259.000      841.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
5    84.8700  1735.070   60.3800    1423.000      474.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
6    49.3400  1276.190   59.9600    1372.000      450.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
7   135.0200  2359.840  164.1300    1224.000      704.0000          NaN                  NaN                           NaN   Bad Power  Check hardware etc.
8   135.0200  2359.840  164.1300    1224.000      704.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
9   163.7200  1893.940   90.0300    1244.000      753.0000          NaN                  NaN                           NaN   Bad Power  Check hardware etc.
10  163.7200  1893.940   90.0300    1244.000      753.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN
11  129.6400  1163.140  154.3200     663.000      798.0000          NaN                  NaN                           NaN   Bad Power  Check hardware etc.
12  129.6400  1163.140  154.3200     663.000      798.0000          NaN       uptilt antenna                  bad coverage         NaN                  NaN

Here is the sample output:

        MAC       RLC     RLC 2  PDCCH Down  PDCCH Uplink  Unnamed: 34 Recommended Solutuin                         State
0  122.9822  7119.503  125.7017    1186.507      784.9464          NaN    Downtitlt antenna  serving cell is overshooting
1    4.1000  7119.503   24.0000      11.000       51.0000          NaN    Downtitlt antenna  serving cell is overshooting
2  121.8900  2127.740  101.3300    1621.000      822.0000          NaN       uptilt antenna                  bad coverage
3   86.5800  2085.250   94.6400    1650.000      880.0000          NaN       uptilt antenna                  bad coverage
4   64.7500  1873.540   63.8600    1259.000      841.0000          NaN       uptilt antenna                  bad coverage
5   84.8700  1735.070   60.3800    1423.000      474.0000          NaN       uptilt antenna                  bad coverage
6   49.3400  1276.190   59.9600    1372.000      450.0000          NaN       uptilt antenna                  bad coverage
7  135.0200  2359.840  164.1300    1224.000      704.0000          NaN  Check hardware etc.                     Bad Power
8  163.7200  1893.940   90.0300    1244.000      753.0000          NaN  Check hardware etc.                     Bad Power
9  129.6400  1163.140  154.3200     663.000      798.0000          NaN  Check hardware etc.                     Bad Power

CodePudding user response:

You can use groupby to combine the rows by columns:

df = pd.DataFrame(data)
new_df = df.groupby(['MAC', 'RLC1', 'RLC2', 'POCCH', 'POCCH Up']).sum()
new_df.reset_index()

CodePudding user response:

You can do something like:

    fill_cols = ['Power State', 'Recommended Solution 2']
    dup_cols = ['MAC_UL','RLC_Through_1','RLC_Through_2','PDCCH Down', 'PDCCH Up']
    m = df.duplicated(subset=dup_cols, keep=False)
    df_fill = df.loc[m,fill_cols]
    df_fill[df_fill['Power State']==''] = np.NaN
    df_fill[df_fill['Recommended Solution 2']==''] = np.NaN
    
    df.loc[m,fill_cols]=df_fill.ffill()
  1. Get duplicated rows using duplicated
  2. Fill empty values with NaN
  3. Then use ffill
  • Related