I would like to combine two pandas dataframes with different dimensions first pandas date frame = df_a second pandas date frame = df_b
df_a :
parametr value
a value_1
b value_1
c value_3
df_b - time sensor data :
iter_0 t_1_1 t_1_2 t_1_3 t_1_4 t_1_5 t_1_6 t_1_7 t_1_8 t_1_9 t_1_10
iter_1 t_2_1 t_2_2 t_2_3 t_2_4 t_2_5 t_2_6 t_2_7 t_2_8 t_2_9 t_2_10
...
iter_n t_n_1 t_n_2 t_n_3 t_n_4 t_n_5 t_n_6 t_n_7 t_n_8 t_n_9 t_n_10
could you tell me how to make a union of different-sized pandas dataframe ?
CodePudding user response:
I would like the panadas dataframe obtained by concatenation df_a and df_b was like that df_ab :
parametr value
a value_1
b value_1
c value_3
iter_0 t_1_1 t_1_2 t_1_3 t_1_4 t_1_5 t_1_6 t_1_7 t_1_8 t_1_9 t_1_10
iter_1 t_2_1 t_2_2 t_2_3 t_2_4 t_2_5 t_2_6 t_2_7 t_2_8 t_2_9 t_2_10
...
iter_n t_n_1 t_n_2 t_n_3 t_n_4 t_n_5 t_n_6 t_n_7 t_n_8 t_n_9 t_n_10
CodePudding user response:
i did so :
f=pd.concat([test,tcalc_new],axis=0,sort=False,join="outer")
but the column names in df_b are on the same level as the column names in df_a , unfortunately I don't like it that way .
CodePudding user response:
I would like it to be like this:
parametr value
a value_1
b value_1
c value_3
iteration calc_1 calc_2 calc_3 calc_4 calc_5 calc_6 calc_7 calc_8 calc_9 calc_10
iter_0 t_1_1 t_1_2 t_1_3 t_1_4 t_1_5 t_1_6 t_1_7 t_1_8 t_1_9 t_1_10
iter_1 t_2_1 t_2_2 t_2_3 t_2_4 t_2_5 t_2_6 t_2_7 t_2_8 t_2_9 t_2_10
...
iter_n t_n_1 t_n_2 t_n_3 t_n_4 t_n_5 t_n_6 t_n_7 t_n_8 t_n_9 t_n_10
where
iteration calc_1 calc_2 calc_3 calc_4 calc_5 calc_6 calc_7 calc_8 calc_9 calc_10
is column names in df_b