I have a dataframe which looks like this:
key text
0 title Lorem ipsum
1 header Lorem ipsum
2 description Lorem ipsum
.
.
.
.
10 pyramid.male Lorem ipsum
11 pyramid.male_surplus Lorem ipsum
12 pyramid.female Lorem ipsum
13 pyramid.female_surplus Lorem ipsum
.
.
.
.
29 jitterplot.title1 Lorem ipsum
30 jitterplot.metric_1.label Lorem ipsum
31 jitterplot.metric_1.tooltip Lorem ipsum
32 jitterplot.metric_2.label Lorem ipsum
33 jitterplot.metric_2.tooltip Lorem ipsum
The keys represent keys in a JSON file. The JSON structure should look like the following:
{
"title": "Lorem ipsum",
"header": "Lorem ipsum",
"description": "Lorem ipsum",
"pyramid": {
"male": "Lorem ipsum",
"male_surplus": "Lorem ipsum",
"female": "Lorem ipsum",
"female_surplus": "Lorem ipsum"
},
"jitterplot": {
"title1": "Lorem ipsum",
"metric_1": {
"label": "Lorem ipsum",
"tooltip": "Lorem ipsum"
},
"metric_2": {
"label": "Lorem ipsum",
"tooltip": "Lorem ipsum"
}
}
}
Meaning, a .
in the key
column represents a nested level.
Is there a 'Pythonic' way to achieve this? Currently, I'm just hacking it by manually writing each row to a text file with a custom parser I wrote. But obviously this is not very scalable.
I've prepared a sample CSV which you can read, and added some additional columns if they help. Use the following code:
import pandas as pd
url = 'https://raw.githubusercontent.com/Thevesh/Display/master/i18n_sample.csv'
df = pd.read_csv(url)
df['n_levels'] = df['key'].str.count('\.') # column with number of levels
max_levels = df.n_levels.max() #
df = df.join(df['key'].str.split('.',expand=True))
df.columns = list(df.columns)[:-max_levels-1] ['key_' str(x) for x in range(max_levels 1)]
CodePudding user response:
Similarly but a bit simpler than the other answers:
def set_nested_value(d, keys, value):
for key in keys[:-1]:
d = d.setdefault(key, {})
d[keys[-1]] = value
result = {}
for _, row in df.iterrows():
set_nested_value(result, row["key"].split("."), row["text"])
CodePudding user response:
This seems like a good fit for a recursive function:
# Dataframe with columns key and value:
df = ...
json_data = {}
def set_value(nested_dict, keys, value):
if len(keys) == 1:
nested_dict[keys[0]] = value
return
if keys[0] not in nested_dict:
nested_dict[keys[0]] = {}
set_value(nested_dict[keys[0]], keys[1:], value)
for full_key, value in zip(df.key, df.text):
keys = full_key.split('.')
set_value(json_data, keys, value)
print(json_data)
CodePudding user response:
def autonesting_dict():
return collections.defaultdict(autonesting_dict)
json_dict = autonesting_dict()
key, value = 'jitterplot.metric_2.tooltip', "Lorem ipsum"
subkeys = key.split('.')
nested_dict = functools.reduce(lambda d, key: d[key], subkeys[:-1], json_dict)
nested_dict[subkeys[-1]] = value
The above will make it so that:
json_dict['jitterplot']['metric_2']['tooltip'] # 'Lorem ipsum'
Just repeat for all rows.
Sidenote regarding:
I've prepared a sample CSV which you can read, and added some additional columns if they help. Use the following code:
Maybe it's just me, but that sounds like something that might be given on an assignment or quiz, not like someone asking for assistance.