Home > Blockchain >  dplyr filter out groups in which the max value (per group) is below the top-3 max-values (per group)
dplyr filter out groups in which the max value (per group) is below the top-3 max-values (per group)

Time:06-10

So I have this dataframe:

structure(list(id = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 
4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 
6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9), year = c("2017", "2018", 
"2019", "2020", "2021", "2022", "2023", "2024", "2025", "2026", 
"2017", "2018", "2019", "2020", "2021", "2022", "2023", "2024", 
"2025", "2026", "2017", "2018", "2019", "2020", "2021", "2022", 
"2023", "2024", "2025", "2026", "2017", "2018", "2019", "2020", 
"2021", "2022", "2023", "2024", "2025", "2026", "2017", "2018", 
"2019", "2020", "2021", "2022", "2023", "2024", "2025", "2026", 
"2017", "2018", "2019", "2020", "2021", "2022", "2023", "2024", 
"2025", "2026", "2017", "2018", "2019", "2020", "2021", "2022", 
"2023", "2024", "2025", "2026", "2017", "2018", "2019", "2020", 
"2021", "2022", "2023", "2024", "2025", "2026", "2017", "2018", 
"2019", "2020", "2021", "2022", "2023", "2024", "2025", "2026"
), volume = c(0.0013, 0.0013, 0.0012579, 0.0011895, 0.0011421, 
0.0010842, 0.0010211, 0.0010158, 0.00099474, 0.00092632, 0.07878, 
0.078791, 0.077295, 0.076638, 0.075538, 0.074468, 0.074776, 0.074051, 
0.071706, 0.068056, 0.023269, 0.023011, 0.022374, 0.021962, 0.021408, 
0.020949, 0.020811, 0.020354, 0.019309, 0.018042, 0.0004, 0.0004, 
0.00038421, 0.00035263, 0.00033158, 0.00032105, 0.00026842, 0.00028421, 
0.00026842, 0.00024211, 0.0002, 0.0001, 0.00011579, 0, 0, 0, 
0, 0, 0, 0, 0.028422, 0.028361, 0.027768, 0.027501, 0.027029, 
0.02651, 0.026588, 0.026209, 0.025094, 0.023391, 0.0001, 0.0001, 
0, 0, 0, 0, 0, 0, 0, 0, 0.0047, 0.0047158, 0.0048368, 0.0048316, 
0.0049263, 0.0049737, 0.0049947, 0.0051684, 0.0052526, 0.0051842, 
0.0106, 0.010389, 0.010279, 0.010005, 0.0098421, 0.0096368, 0.0094053, 
0.0093368, 0.0092526, 0.0089316)), class = c("tbl_df", "tbl", 
"data.frame"), row.names = c(NA, -90L))

Which looks like this:

# A tibble: 6 × 3
     id year   volume
  <dbl> <chr>   <dbl>
1     1 2017  0.0013 
2     1 2018  0.0013 
3     1 2019  0.00126
4     1 2020  0.00119
5     1 2021  0.00114
6     1 2022  0.00108

Id has 9 distinct IDs, each with 10 rows. Now I would like to find the maximum value for the column volume and then filter out the groups (or just make an extra column like inTop3 ) that highlights those IDs which are in the top-3 highest volume values.

This could mean that the largest 3 values are within the group with ID = 2. But I really only want to compare the maximum value of each group with the maximum value of each other group.

Getting the maximum value per group is trivial:

df %>% 
  group_by(id) %>% 
  mutate(
    m = max(volume)
  ) 

But then I am a little lost how to go on. Especially I wonder how I could create a boolean column that indicates wheter a group is in the top-3 or not.

CodePudding user response:

You may use dplyr::top_n

df  %>%
  group_by(id) %>%
  arrange(id, desc(volume)) %>%
  top_n(3)

      id year   volume
   <dbl> <chr>   <dbl>
 1     1 2017  0.0013 
 2     1 2018  0.0013 
 3     1 2019  0.00126
 4     2 2018  0.0788 
 5     2 2017  0.0788 
 6     2 2019  0.0773 
 7     3 2017  0.0233 
 8     3 2018  0.0230 
 9     3 2019  0.0224 
10     4 2017  0.0004 
# … with 24 more rows

top3/nottop3

df  %>%
  group_by(id) %>%
  arrange(id, desc(volume)) %>%
  mutate(top3 = ifelse(row_number() %in% c(1,2,3), "top3", "nottop3"))

     id year    volume top3   
   <dbl> <chr>    <dbl> <chr>  
 1     1 2017  0.0013   top3   
 2     1 2018  0.0013   top3   
 3     1 2019  0.00126  top3   
 4     1 2020  0.00119  nottop3
 5     1 2021  0.00114  nottop3
 6     1 2022  0.00108  nottop3
 7     1 2023  0.00102  nottop3
 8     1 2024  0.00102  nottop3
 9     1 2025  0.000995 nottop3
10     1 2026  0.000926 nottop3

CodePudding user response:

Another possible solution:

library(dplyr)

df %>% 
  group_by(id) %>% 
  summarise(m = max(volume)) %>% 
  slice_max(m, n = 3)

#> # A tibble: 3 × 2
#>      id      m
#>   <dbl>  <dbl>
#> 1     2 0.0788
#> 2     6 0.0284
#> 3     3 0.0233
  • Related