Home > Blockchain >  Pandas: Join with pratial match (like VLOOKUP) but in certain order
Pandas: Join with pratial match (like VLOOKUP) but in certain order

Time:06-20

I am trying to perform an action in Python which is very similar to VLOOKUP in Excel. but based on the first part of a string, problem is that firt part is not of a certain lenghts.

Ex: I have refrence data of Gouna and GreenLand, but lookupvalue for Gouna sometimes starts with G and other times starts with Gou and for lookupvalues for GreenLand starts with Gre

I have the following two pandas dataframes:

df1 = pd.DataFrame({'Abb': ['G', 'GRE', 'Gou', 'B'],
                    'FullName': ['Gouna', 'GreenLand', 'Gouna', 'Bahr']})

df2 = pd.DataFrame({'OrderNo': ['INV20561', 'INV20562', 'INV20563', 'INV20564'],
                    'AreaName': ['GRE65335', 'Gou6D654', 'Gddd654', 'B65465']})


print(df1)

   Abb   FullName
0    G      Gouna
1  GRE  GreenLand
2  Gou      Gouna
3    B    Bahrain

print(df2)

    OrderNo  AreaName
0  INV20561  GRE65335
1  INV20562  Gou6D654
2  INV20563   Gddd654
3  INV20564    B65465

and my needed out put should be:

    OrderNo     AreaName    FullName
0   INV20561    GRE65335    GreenLand
1   INV20562    Gou6D654    Gouna
2   INV20563    Gddd654     Gouna
3   INV20564    B65465      Bahr

My approach would be to sort the Abb values in the df1 descendingly by values length:

df1.sort_values(by="Abb", key=lambda x: x.str.len(), ascending=False)

    Abb FullName
1   GRE GreenLand
2   Gou Gouna
0   G   Gouna
3   B   Bahrain

then perform some sort with vlookup with for loop instead of or applying a custom function. and here is where I am stuck

thanks in advance

CodePudding user response:

You can craft a regex to extract the country Abb, then use this as a merging key:

# we need to sort the Abb by decreasing length to ensure
# specific Abb match before more generic (e.g. Gou/GRE match before G)
regex = '|'.join(df1['Abb'].sort_values(key=lambda s: s.str.len(),
                                        ascending=False)
                 )
# 'GRE|Gou|G|B'

out = df2.merge(df1, right_on='Abb',
                left_on=df2['AreaName'].str.extract(f'^({regex})', expand=False)
                )

If case does not matter:

key = df1['Abb'].str.lower()
regex = '|'.join(key
                 .sort_values(key=lambda s: s.str.len(), ascending=False)
                 )
# 'gre|gou|g|b'

out = df2.merge(df1, right_on=key,
                left_on=df2['AreaName']
                        .str.lower()
                        .str.extract(f'^({regex})', expand=False)
                ).drop(columns='key_0')

output:

    OrderNo  AreaName  Abb   FullName
0  INV20561  GRE65335  GRE  GreenLand
1  INV20562  Gou6D654  Gou      Gouna
2  INV20563   Gddd654    G      Gouna
3  INV20564    B65465    B       Bahr
  • Related