I have a DataFrame
with 1mln of rows and two columns Type
and Name
whose values are a lists with non-unique values. Both Type
and Name
columns have the same number of elements because they form a pair (Type
, Name
). I would like to add to my DataFrame
columns whose names are the unique types from Type
column with the values being a list of corresponding values from Name
columns. Below is a short example of the current code. It works but very slow when the number of rows is 1mln so I'm looking for a faster solution.
import pandas as pd
df = pd.DataFrame({"Type": [["1", "1", "2", "3"], ["2","3"]], "Name": [["A", "B", "C", "D"], ["E", "F"]]})
unique = list(set(df["Type"].explode()))
for t in unique:
df[t] = None
df[t] = df[t].astype('object')
for idx, row in df.iterrows():
for t in unique:
df.at[idx, t] = [row["Name"][i] for i in range(len(row["Name"])) if row["Type"][i] == t]
CodePudding user response:
You can explode the whole dataframe and then use your exploded dataframe and pivot it with a list
as the aggfunc (Resetting the index to use the index as the grouper for the pivot)
df.explode(column=['Type','Name']).reset_index().pivot_table(index='index',columns='Type', values='Name',aggfunc=list)
Type 1 2 3
index
0 [A, B] [C] [D]
1 NaN [E] [F]
And then concat it back onto the original
pd.concat([df,df.explode(column=['Type','Name']).reset_index().pivot_table(index='index',columns='Type', values='Name',aggfunc=list)],axis=1)
Type Name 1 2 3
0 [1, 1, 2, 3] [A, B, C, D] [A, B] [C] [D]
1 [2, 3] [E, F] NaN [E] [F]
As requested, here is the code broken out by step for debugging purposes
df1=df.explode(column=['Type','Name'])
df1=df1.reset_index()
pvt=df1.pivot_table(index='index',columns='Type', values='Name',aggfunc=list)
pd.concat([df,pvt],axis=1)
CodePudding user response:
Alternative solution:
df = pd.DataFrame({"Type": [["1", "1", "2", "3"], ["2","3"]], "Name": [["A", "B", "C", "D"], ["E", "F"]]})
df_conc = pd.concat([df, df.apply(pd.Series.explode).reset_index().groupby(['index', 'Type']).agg(list).unstack().droplevel(level=0, axis=1).fillna("").apply(list)], axis=1)
df_conc
----------------------------------------------
Type Name 1 2 3
0 [1, 1, 2, 3] [A, B, C, D] [A, B] [C] [D]
1 [2, 3] [E, F] [E] [F]
----------------------------------------------
If nan
values are accepted, just remove .fillna("").apply(list)
:
df_conc = pd.concat([df, df.apply(pd.Series.explode).reset_index().groupby(['index', 'Type']).agg(list).unstack().droplevel(level=0, axis=1)], axis=1)
df_conc
----------------------------------------------
Type Name 1 2 3
0 [1, 1, 2, 3] [A, B, C, D] [A, B] [C] [D]
1 [2, 3] [E, F] NaN [E] [F]
----------------------------------------------