Assume the following Pandas df:
# Import dependency.
import pandas as pd
# Create data for df.
data = {'Value': [1000, 1020, 1011, 1010, 1030, 950, 1001, 1100, 1121, 1131],
'Dummy_Variable': [0,0,1,0,0,0,1,0,1,1]
}
# Create DataFrame
df = pd.DataFrame(data)
display(df)
I want to add a new column to the df called 'Placeholder.' The value of Placeholder would be based on the 'Dummy_Variable' column based on the following rules:
- If all previous rows had a 'Dummy_Variable' value of 0, then the 'Placeholder' value for that row would be equal to the 'Value' for that row.
- If the 'Dummy_Variable' value for a row equals 1, then the 'Placeholder' value for that row would be equal to the 'Value' for that row.
- If the 'Dummy_Variable' value for a row equals 0 but the 'Placeholder' value for the row immediately above it is >0, then the 'Placeholder' value for the row would be equal to the 'Placeholder' value for the row immediately above it.
The desired result is a df with new 'Placeholder' column that looks like the df generated by running the code below:
desired_data = {'Value': [1000, 1020, 1011, 1010, 1030, 950, 1001, 1100, 1121, 1131],
'Dummy_Variable': [0,0,1,0,0,0,1,0,1,1],
'Placeholder': [1000,1020,1011,1011,1011,1011,1001,1001,1121,1131]}
df1 = pd.DataFrame(desired_data)
display(df1)
I can do this easily in Excel, but I cannot figure out how to do it in Pandas without using a loop. Any help is greatly appreciated. Thanks!
CodePudding user response:
You can use np.where for this:
import pandas as pd
import numpy as np
data = {'Value': [1000, 1020, 1011, 1010, 1030, 950, 1001, 1100, 1121, 1131],
'Dummy_Variable': [0,0,1,0,0,0,1,0,1,1]
}
df = pd.DataFrame(data)
df['Placeholder'] = np.where((df.Dummy_Variable.cumsum() == 0) | (df.Dummy_Variable == 1), df.Value, np.nan)
# now forward fill the remaining NaNs
df['Placeholder'].fillna(method='ffill', inplace=True)
df
Value Dummy_Variable Placeholder
0 1000 0 1000.0
1 1020 0 1020.0
2 1011 1 1011.0
3 1010 0 1011.0
4 1030 0 1011.0
5 950 0 1011.0
6 1001 1 1001.0
7 1100 0 1001.0
8 1121 1 1121.0
9 1131 1 1131.0
# check output:
desired_data = {'Value': [1000, 1020, 1011, 1010, 1030, 950, 1001, 1100, 1121, 1131],
'Dummy_Variable': [0,0,1,0,0,0,1,0,1,1],
'Placeholder': [1000,1020,1011,1011,1011,1011,1001,1001,1121,1131]}
df1 = pd.DataFrame(desired_data)
check = df['Placeholder'] == df1['Placeholder']
check.sum()==len(df1)
# True