I have an array and given an array of size N containing positive integers and I want to count number of smaller elements on right side of each array.
for example:-
Input:
N = 7
arr[] = {12, 1, 2, 3, 0, 11, 4}
Output: 6 1 1 1 0 1 0
Explanation: There are 6 elements right
after 12. There are 1 element right after
1. And so on.
And my code for this problem is like as :-
# python code here
n=int(input())
arr=list(map(int,input().split()))
ans=0
ANS=[]
for i in range(n-1):
for j in range(i 1,n):
if arr[i]>arr[j]:
ans =1
ANS.append(ans)
ans=0
ANS.append(0)
print(ANS)
but the above my code take O(n^2) time complexity and I want to reduce the this. If anyone have any idea to reduce above python code time complexity please help me. Thank you.
CodePudding user response:
This solution is O(n log(n)) as it is three iterations over the values and one sorting.
arr = [12, 1, 2, 3, 0, 11, 4]
# Gather original index and values
tups = []
for origin_index, el in enumerate(arr):
tups.append([origin_index, el])
# sort on value
tups.sort(key=lambda t: t[1])
res = []
for sorted_index, values in enumerate(tups):
# check the difference between the sorted and original index
# If there is a positive value we have the n difference smaller
# values to the right of this index value.
if sorted_index - values[0] > 0:
res.append([values[0], (sorted_index - values[0])])
elif sorted_index - values[0] == 0:
res.append([values[0], (sorted_index - values[0]) 1])
else:
res.append([values[0], 0])
origin_sort_res = [0 for i in range(len(arr))]
for v in res:
# Return the from the sorted array to the original indexing
origin_sort_res[v[0]] = v[1]
print(origin_sort_res)
CodePudding user response:
try this(nlog2n)
def solution(nums):
sortns = []
res = []
for n in reversed(nums):
idx = bisect.bisect_left(sortns, n)
res.append(idx)
sortns.insert(idx,n)
return res[::-1]
print(solution([12, 1, 2, 3, 0, 11, 4]))
# [6, 1, 1, 1, 0, 1, 0]