I have a 3-level nested dict and I would like to find the max value of the 3rd-level dict and have it mapped to the 2nd-level key it belongs to. For example, In "Loc-1" dict value, there are two 2nd-level keys that are "36", I want this key mapped to the value "56".
This is the dict:
{
"Loc-1": {
"A-1": {"36" : {"value" : "34"}},
"A-2": {"36" : {"value" : "56"}},
"A-3": {"48" : {"value" : "72"}},
"A-4": {"100" : {"value" : "77"}},
"A-5": {"48" : {"value" : "2"}},
"A-6": {"100" : {"value" : "10"}},
"A-7": {"44" : {"value": "21"}}
}
"Loc-2": {
"A-8": {"44" : {"value" : "52"}},
"A-9": {"48" : {"value" : "23"}},
"A-10": {"40" : {"value" : "62"}},
"A-11": {"153" : {"value" : "43"}},
"A-12": {"40" : {"value" : "22"}},
"A-13": {"153" : {"value" : "10"}},
"A-14": {"36" : {"value": "21"}}
}
}
This is the desired state:
{
"Loc-1": {
"36" : "56",
"48" : "72",
"100": "77",
"44" : "21"
}
"Loc-2": {
"36" : "21",
"40" : "62",
"48" : "23",
"44" : "52",
"153": "43",
}
}
I'm finding it hard to compare one value to all the other values with the same key when it nested like this. How can I accomplish this?
CodePudding user response:
Nested loops will work:
results = {}
# 1st level: "Loc-1", "Loc-2"
for key1 in data:
# Initialize to empty dictionary
results[key1] = {}
# 2nd level: A-1, A-2, etc
for key2 in data[key1]:
# First key 3rd level: 38, 36, etc
key3 = next(iter(data[key1][key2]))
value = data[key1][key2][key3]["value"]
# Set max if already in results or just add
if key3 in results[key1]:
results[key1][key3] = max(results[key1][key3], value)
else:
results[key1][key3] = value
CodePudding user response:
IIUC, you can do the following.
def process(d):
def process_(dic_1st_level):
' Get max values from 2nd level dics '
result = {}
for a, d_2nd_level in dic_1st_level.items():
for label, v in d_2nd_level.items():
result[label] = max(result.get(label, 0), v['value'], key = int)
# Sort result by key as ints
return dict(sorted(result.items(), key = lambda kv: int(kv[0])))
return {k.replace("Loc", "Site"):process_(v) for k, v in d.items()}
Usage
print(process(d)) # d is the input nested dictionary
Output
{
"Site-1": {
"36": "56",
"44": "21",
"48": "72",
"100": "77"
},
"Site-2": {
"36": "21",
"40": "62",
"44": "52",
"48": "23",
"153": "43"
}
}
CodePudding user response:
Let's start with the easy, inner-most dictionary first and work our way out to the outer dictionary. I will call the inner most dictionary simply dict_object
, e.g. {"36" : {"value" : "34"}}
. In order to work with this dictionary, I find it easier to transform it into a simpler structure: A tuple with two elements: ("36", "34")
. For that, I created a function called transform_value
:
def transform_value(dict_object):
"""Transform {"36" : {"value" : "34"}} --> ("36", "34")."""
for key, value in dict_object.items():
return key, value["value"]
# Test it out
>>> transform_value({"36" : {"value" : "34"}})
('36', '34')
Next, I also need to compare two strings numerically and return the larger one:
def maxint(a, b):
"""Take max of two strings which represents two ints."""
return str(max(int(a), int(b)))
# Test it out:
>>> maxint("34", "56")
'56'
Working out (or up) one more level, the level with the 'Loc-1' values:
def transform_loc(loc_values):
transformed = {}
for dict_object in loc_values:
key, value = transform_value(dict_object)
transformed.setdefault(key, value)
transformed[key] = maxint(transformed[key], value)
return transformed
# Test it out, let's call the original structure `data`
>>> transform_loc(data["Loc-1"].values())
{'36': '56', '48': '72', '100': '77', '44': '21'}
Putting it all together:
new_data = {
key: transform_loc(loc.values())
for key, loc in data.items()
}
# New data is
{
"Loc-1": {
"36": "56",
"48": "72",
"100": "77",
"44": "21"
},
"Loc-2": {
"44": "52",
"48": "23",
"40": "62",
"153": "43",
"36": "21"
}
}