Given the following column in pandas dataframe:
Name: Hockey Canada; NAICS: 711211
Name: Hockey Canada; NAICS: 711211
Name: International AIDS Society; NAICS: 813212
Name: Rogers Communications Inc; NAICS: 517112, 551112; Name: Hockey Canada; NAICS: 711211
Name: Health Benefits Trust; NAICS: 524114; Name: Hockey Canada; NAICS: 711211; Name: National Equity Fund; NAICS: 523999, 531110
I'd like to extract the NAICS code from each row (where they exist) in the pandas column. The desired result is indicated in column "expected_result".
711211
711211
813212
517112; 551112; 711211
524114; 711211; 523999; 531110
I have NaN in some rows please any suggestion using regex and python will be very helpful. I tried the regex findall function but I got an error.
I write this function:
def find_number(text):
num = re.findall(r'[0-9] ',text)
return " ".join(num)
I used it in apply
function like :
df['NAICS']=df['Company'].apply(lambda x: find_number(x))
I got this error:
KeyError Traceback (most recent call last) Input In [81], in <cell line: 1>() ----> 1 df['NAICS']=df['Company'].apply(lambda x: find_number(x))
CodePudding user response:
You can use
df['expected_result'] = df['organization'].astype(str).str.findall(r'\bNAICS:\s*(\d (?:\s*,\s*\d )*)').str.join(' ').str.findall(r'\d ').str.join("; ")
Details:
.str.findall(r'\bNAICS:\s*(\d (?:\s*,\s*\d )*)')
- find all comma separated numbers afterNAICS:
.str.join(' ')
- joins the found matches with a space.str.findall(r'\d ')
- extracts numbers separately.str.join("; ")
- joins them with;
and space.
See a Pandas test:
import pandas as pd
df = pd.DataFrame({'organization':['NAICS: 12342; NAICS: 55555, 66667', 'NAICS:9999']})
df['expected_result'] = df['organization'].astype(str).str.findall(r'\bNAICS:\s*(\d (?:\s*,\s*\d )*)').str.join(' ').str.findall(r'\d ').str.join("; ")
Output:
>>> df
organization expected_result
0 NAICS: 12342; NAICS: 55555, 66667 12342; 55555; 66667
1 NAICS:9999 9999
CodePudding user response:
There's likely some code golfy or more dataframe-friendly way to pull this off, but the overall logic will look something like:
import pandas as pd
import re
NAICSdf = pd.DataFrame(['Name: Hockey Canada; NAICS: 711211','Name: Hockey Canada; NAICS: 711211','Name: International AIDS Society; NAICS: 813212','Name: Rogers Communications Inc; NAICS: 517112, 551112; Name: Hockey Canada; NAICS: 711211','Name: Health Benefits Trust; NAICS: 524114; Name: Hockey Canada; NAICS: 711211; Name: National Equity Fund; NAICS: 523999, 531110'], columns=['organization'], )
def findNAICS(organization):
NAICSList = []
for found in re.findall(r'NAICS:\s[0-9, ]*', organization):
for NAICS in found.split(': ')[1].split(', '):
NAICSList.append(NAICS)
return '; '.join(NAICSList)
NAICSdf['NAICS'] = NAICSdf['organization'].apply(findNAICS)
print(NAICSdf)
That will create a new column in your dataframe with a semicolon delimited list of NAICS codes from your string.
CodePudding user response:
If you wish to sort this by regex then you can do this: It simply looks for the recurrence of 6 digits combined together. As it seems like there are some cases of NAICS having multiple records in a row i didn't go more precise. That might cause some inaccuracy if the data involves other records with 6 digit groupings.
str1 = 'Name: Hockey Canada; NAICS: 711211'
str2 = 'Name: Rogers Communications Inc; NAICS: 517112, 551112; Name: Hockey Canada; NAICS: 711211'
data = [str1, str2]
results = [re.findall('\d{6}', entry) for entry in data]
print(results)
Ouput:
[['711211'], ['517112', '551112', '711211']]
You might also want to change the delimiter if needed, depending on how you intend on processing the data before entering it into the records. And the list stores a list of hits per row so this can be sorted as you see fit.