Home > Blockchain >  Separate bar plot into multiple plots based on the first column value
Separate bar plot into multiple plots based on the first column value

Time:08-21

I do have a data frame:

df = pd.DataFrame({'sample_ids':['sample1a_1', 'sample1b_2', 'sample1c_3', 'sample2a_2', 'sample2b_4'], 
                   'perc_A':[0.75,0.66667,0.70213,0.83333,0.5],
                   'perc_B':[0.18182,0.24747,0.28176,0.16529,0.26316],
                   'perc_C':[0.4222,0.15823,0.17925,0.55556,0.21053]})

I would like to plot multiple 100% stacked and grouped bar charts based on the sample_ids. For example, sample1a_1, sample1b_2, sample1c_3 will be in one plot, while sample2a_2 and sample2b_4 will be in another plot. Another way of explanation, if the first six characters are the same, then the bar should be within the same figure.

Example of expected figures:
Figure N1: enter image description here

Figure N2: enter image description here


Current code:

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20,10)

df = pd.DataFrame({'sample_ids':['sample1a_1', 'sample1b_2', 'sample1a_3', 'sample2a_2', 'sample2b_4'], 
                   'perc_A':[0.75,0.66667,0.70213,0.83333,0.5],
                   'perc_B':[0.18182,0.24747,0.28176,0.16529,0.26316],
                   'perc_C':[0.4222,0.15823,0.17925,0.55556,0.21053]})

df[['perc_F_A', 'perc_F_B', 'perc_F_C']] = 1

meltedDF = df.melt(id_vars=['sample_ids'], var_name='perc', value_name='percent')
meltedDF['percent']=meltedDF['percent']*100

sns.barplot(data=meltedDF[meltedDF.perc.str.contains('F')], x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'], alpha=0.5)
sns.barplot(data=meltedDF[~meltedDF.perc.str.contains('F')], x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'])

plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
plt.xlabel("Sample ID")
plt.ylabel("Percentage (%)")

plt.show()

and current figure: enter image description here

CodePudding user response:

You have manually create two subplots and get two axis

fig, (ax1, ax2) = plt.subplots(2)

And later you has to split data

v1 = meltedDF[ meltedDF['sample_ids'].isin(['sample1a_1', 'sample1b_2', 'sample1a_3']) ]
v2 = meltedDF[ meltedDF['sample_ids'].isin(['sample2a_2', 'sample2b_4']) ]

and draw them on different axis sns.barplot(..., ax=...)


import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20,10)

df = pd.DataFrame({'sample_ids':['sample1a_1', 'sample1b_2', 'sample1a_3', 'sample2a_2', 'sample2b_4'], 
                   'perc_A':[0.75,0.66667,0.70213,0.83333,0.5],
                   'perc_B':[0.18182,0.24747,0.28176,0.16529,0.26316],
                   'perc_C':[0.4222,0.15823,0.17925,0.55556,0.21053]})

df[['perc_F_A', 'perc_F_B', 'perc_F_C']] = 1

meltedDF = df.melt(id_vars=['sample_ids'], var_name='perc', value_name='percent')
meltedDF['percent'] = meltedDF['percent']*100

# --------------

fig, (ax1, ax2) = plt.subplots(2)

# --- plot 1 ---

v1 = meltedDF[ meltedDF['sample_ids'].isin(['sample1a_1', 'sample1b_2', 'sample1a_3']) ]

sns.barplot(ax=ax1, data=v1[v1.perc.str.contains('F')],  x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'], alpha=0.5)
sns.barplot(ax=ax1, data=v1[~v1.perc.str.contains('F')], x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'])

ax1.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
ax1.set_xlabel("Sample ID")      # plt.xlabel("Sample ID")
ax1.set_ylabel("Percentage (%)") # plt.ylabel("Percentage (%)")

# --- plot 2 ---

v2 = meltedDF[ meltedDF['sample_ids'].isin(['sample2a_2', 'sample2b_4']) ]

sns.barplot(ax=ax2, data=v2[v2.perc.str.contains('F')],  x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'], alpha=0.5)
sns.barplot(ax=ax2, data=v2[~v2.perc.str.contains('F')], x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'])

ax2.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
ax2.set_xlabel("Sample ID")      # plt.xlabel("Sample ID")
ax2.set_ylabel("Percentage (%)") # plt.ylabel("Percentage (%)")

# --------------

plt.show()

enter image description here


EDIT:

And if you want to automate it then you can use for-loop and dict to split it

splitted = {}

for item in df['sample_ids']:
    prefix = item[:7]
    if prefix not in splitted:
        splitted[prefix] = []
    splitted[prefix].append(item)
    
for key, val in splitted.items():
    print(key, val)

Result:

sample1 ['sample1a_1', 'sample1b_2', 'sample1a_3']
sample2 ['sample2a_2', 'sample2b_4']

And later you can use for-loop to plot all subdata

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (20,10)

df = pd.DataFrame({'sample_ids':['sample1a_1', 'sample1b_2', 'sample1a_3', 'sample2a_2', 'sample2b_4'], 
                   'perc_A':[0.75,0.66667,0.70213,0.83333,0.5],
                   'perc_B':[0.18182,0.24747,0.28176,0.16529,0.26316],
                   'perc_C':[0.4222,0.15823,0.17925,0.55556,0.21053]})

df[['perc_F_A', 'perc_F_B', 'perc_F_C']] = 1

meltedDF = df.melt(id_vars=['sample_ids'], var_name='perc', value_name='percent')
meltedDF['percent'] = meltedDF['percent']*100

# --------------

splitted = {}

for item in df['sample_ids']:
    prefix = item[:7]
    if prefix not in splitted:
        splitted[prefix] = []
    splitted[prefix].append(item)
    
for key, val in splitted.items():
    print(key, val)

# --------------

fig, axs = plt.subplots(len(splitted))

for ax, (key, val) in zip(axs, splitted.items()):
    
    subdata = meltedDF[ meltedDF['sample_ids'].isin(val) ]

    sns.barplot(ax=ax, data=subdata[subdata.perc.str.contains('F')],  x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'], alpha=0.5)
    sns.barplot(ax=ax, data=subdata[~subdata.perc.str.contains('F')], x='sample_ids', y='percent', hue='perc', palette=['blue','green','red'])

    ax.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
    ax.set_xlabel("Sample ID")      # plt.xlabel("Sample ID")
    ax.set_ylabel("Percentage (%)") # plt.ylabel("Percentage (%)")

# --------------

plt.show()

EDIT:

You may also try to split it using groupby()

for key, val in df.groupby(df['sample_ids'].str[:7]):
    print('---', key, '---')
    #print(val['sample_ids'])
    print(val)

Result:

--- sample1 ---
   sample_ids   perc_A   perc_B   perc_C  perc_F_A  perc_F_B  perc_F_C
0  sample1a_1  0.75000  0.18182  0.42220         1         1         1
1  sample1b_2  0.66667  0.24747  0.15823         1         1         1
2  sample1a_3  0.70213  0.28176  0.17925         1         1         1
--- sample2 ---
   sample_ids   perc_A   perc_B   perc_C  perc_F_A  perc_F_B  perc_F_C
3  sample2a_2  0.83333  0.16529  0.55556         1         1         1
4  sample2b_4  0.50000  0.26316  0.21053         1         1         1

  • Related