Home > Blockchain >  Number of times of occurrence before a specific date in Pandas DataFrame
Number of times of occurrence before a specific date in Pandas DataFrame

Time:08-22

I have the following Pandas dataframe in Python:

ID      Date
E105    28/4/2021
E105    28/2/2021
E105    23/12/2020
E105    29/11/2020
E076    7/7/2021
E076    20/6/2021
E076    26/5/2021
E076    8/4/2021
E076    3/3/2021
E076    3/2/2021
E076    13/1/2021
E076    23/12/2020
E066    2/6/2021
E066    8/5/2021
E066    8/4/2021
E066    17/1/2021
E066    23/12/2020
E066    2/12/2020
E066    14/11/2020

sorted by ID and Date and I would like to make a new column counting how many times that ID occurs before that day: i.e.:

ID      Date        number of times before that day
E105    28/4/2021   3
E105    28/2/2021   2
E105    23/12/2020  1
E105    29/11/2020  0
E076    7/7/2021    7
E076    20/6/2021   6
E076    26/5/2021   5
E076    8/4/2021    4
E076    3/3/2021    3
E076    3/2/2021    2
E076    13/1/2021   1
E076    23/12/2020  0
E066    2/6/2021    6
E066    8/5/2021    5
E066    8/4/2021    4
E066    17/1/2021   3
E066    23/12/2020  2
E066    2/12/2020   1
E066    14/11/2020  0

I think it has something to do with groupby but I couldn't work it out.

CodePudding user response:

As the df is already sorted by Date (in descending order), it suffices to cumulatively count the occurrences of each ID in descending order (which can be achieved via ascending=False parameter).

df['number of times before that day'] = df.groupby('ID').cumcount(ascending=False)
  • Related