Even though tf.agents initialize() require no input variables, this line
agent.initialize()
produces this error
TypeError: initialize() missing 1 required positional argument: 'self'
Ive tried agent.initialize(agent) because it apparently wanted self passing in... obviously that didnt work XD
I suspect the problem might be that this line
print(type(agent))
Produces
<class 'abc.ABCMeta'>
But that might be normal...
##################################
My whole script below is reproducable
### for 9 by 9 connect 4 board
#
import tensorflow as tf
from tf_agents.networks import q_network
from tf_agents.agents.dqn import dqn_agent
import tf_agents
import numpy as np
print(tf.__version__)
print(tf_agents.__version__)
import tensorflow.keras
observation_spec = tf.TensorSpec( # observation tensor = the whole board , ideally 0's, 1's , 2's for empty, occupied by player 1 , occupied by player 2
[9,9],
dtype=tf.dtypes.float32,
name=None
)
action_spec = tf_agents.specs.BoundedArraySpec(
[1], ### tf_agents.networks.q_network only seems to take an action of size 1
dtype= type(1) , #tf.dtypes.float64,
name=None,
minimum=0,
maximum=2
)
#######################################
def make_tut_layer(size):
return tf.keras.layers.Dense(
units= size,
activation= tf.keras.activations.relu,
kernel_initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1.)
)
def make_q_layer(num_actions):
q_values_layer = tf.keras.layers.Dense ( # last layer gives probability distribution over all actions so we can pick best action
num_actions ,
activation = tf.keras.activations.relu ,
kernel_initializer = tf.keras.initializers.RandomUniform( minval = 0.03 , maxval = 0.03),
bias_initializer = tf.keras.initializers.Constant(-0.2)
)
return q_values_layer;
############################## stick together layers below
normal_layers = []
for i in range(3):
normal_layers.append(make_tut_layer(81))
q_layer = make_q_layer(9)
q_net = keras.Sequential(normal_layers [q_layer])
######################################
agent = dqn_agent.DqnAgent
(
observation_spec, ### bonus question, why do i get syntax errors when i try to label variables like ---> time_step_spec = observation_spec, gives me SyntaxError: invalid syntax on the = symbol
action_spec,
q_net,
tf.keras.optimizers.Adam(learning_rate= 0.001 )
)
eval1 = agent.policy
print(eval1)
eval2= agent.collect_policy
print(eval2)
print(type(agent))
agent.initialize()
print(" done ")
And produces the output.
2.9.2
0.13.0
<property object at 0x000001A13268DA90>
<property object at 0x000001A13268DAE0>
<class 'abc.ABCMeta'>
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Input In [53], in <cell line: 73>()
71 print(eval2)
72 print(type(agent))
---> 73 agent.initialize()
74 print(" done ")
TypeError: initialize() missing 1 required positional argument: 'self'
Is my agents type ok? should it be <class 'abc.ABCMeta'>
Why does my agent fail to initialize?
CodePudding user response:
I guess, answer is very simple: you can't just move (
to the next line for the function call.
What you're effectively doing:
make agent
an alias for dqn_agent.DqnAgent
(the class)
agent = dqn_agent.DqnAgent
calculate an expression and discard its result
(
observation_spec,
action_spec,
q_net,
tf.keras.optimizers.Adam(learning_rate= 0.001 )
)
that also answers the bonus question – since it's not a function call, there are no named parameters, and assignments are not allowed in an expression (this is what python says).
Put the opening bracket right after dqn_agent.DqnAgent
, and it should work:
agent = dqn_agent.DqnAgent(
observation_spec,
action_spec,
q_net,
tf.keras.optimizers.Adam(learning_rate= 0.001 )
)