Home > Blockchain >  Appending dictionaries to a list from a csv file
Appending dictionaries to a list from a csv file

Time:09-08

I have a csv file like:

Rack Tube Well sample_vol solvent_vol
1 0 A1 230 400
1 1 B1 200 20
2 2 G1 5 30
3 1 A1 90 40
3 20 A1 100 90

And i'm trying to make mappings between the different columns for each row, using dictionaries. But I'm stuck at how to make separate dictionaries within a single list for each of the different values of "Rack". Basically I need an output like:

print(rack_list)
[{'0':230,'1':200},{'2':5},{'1':90,'20':200}]

Where each dict in the list stores the mappings for each Rack.

This is what I have so far:

    csv_reader = csv.DictReader(csvfile)
    header = csv_reader.fieldnames
    solvent_volume_map = {}
    sample_volume_map = {}
    max_rack = None
    rack = None
    rack_list = []
    for csv_row in csv_reader:
        rack = int(csv_row["Rack"])
        if max_rack == None or max_rack < rack:
          max_rack = rack
        destination_well = csv_row['Well']
        source_tube = csv_row['Tube']
        source_rack = csv_row['Rack']
        print(source_rack)
        try:
            solvent_volume = float(csv_row['solvent_vol'])
            sample_volume = float(csv_row['sample_vol'])
        except ValueError as e:
            # blank csv entry
            solvent_volume = "skip"
            sample_volume = "skip"
        solvent_volume_map[destination_well] = solvent_volume
        for i in range(max_rack):
          sample_volume_map[source_tube] = sample_volume
          rack_list.append(sample_volume_map)

CodePudding user response:

You can go with pandas package or else with csv.

with csv package

Source Code 1

import csv

with open("./test.csv", newline="") as f:
    csv_reader = csv.DictReader(f)
    header = csv_reader.fieldnames
    rack_idx_map = {} # mapping of rack number and corresponding index no. in rack_list
    idx = 0 # index number
    rack_list = []
    for csv_row in csv_reader:
        rack = int(csv_row["Rack"])
        if rack in rack_idx_map: # if rack number is present in rack_idx_map
            rack_list[rack_idx_map[rack]][csv_row["Tube"]] = int(csv_row["sample_vol"])
        else: # if new rack number then add new dict and it's mapping
            rack_list.append({csv_row["Tube"]: int(csv_row["sample_vol"])})
            rack_idx_map[rack] = idx
            idx  = 1

print(rack_list)
print(rack_idx_map) # rack 1 mapped at index 0, rack 2 mapped at index 1 and so on

OUTPUT

[{'0': 230, '1': 200}, {'2': 5}, {'1': 90, '20': 100}]
{1: 0, 2: 1, 3: 2}

Source Code 2

import csv

with open("./test.csv", newline="") as f:
    csv_reader = csv.DictReader(f)
    header = csv_reader.fieldnames
    rack = None
    rack_list = []
    temp_dict = {}
    prev_rack = 1
    for csv_row in csv_reader:
        rack = int(csv_row["Rack"])
        if rack != prev_rack:
            rack_list.append(temp_dict)
            temp_dict = {}
        temp_dict[csv_row["Tube"]] = int(csv_row["sample_vol"])
        prev_rack = rack
    rack_list.append(temp_dict)

rack_list

OUTPUT:

[{'0': 230, '1': 200}, {'2': 5}, {'1': 90, '20': 100}]

PS of Source Code 2:

Assuming Rack is in sorted order and it start's from 1

with pandas package

Source Code

import pandas as pd

df = pd.read_csv("./test.csv") # read csv file
# pandas will by default type cast the data type
df["Tube"] = df["Tube"].astype(str) # will cast Tube from int to str
df.groupby("Rack")[["Tube", "sample_vol"]].apply(lambda row: dict([*row.values])).tolist()
# grouping data based on Rack then selecting Tube and sample_vol column then converting it's row value to dict and back to list

OUTPUT:

[{'0': 230, '1': 200}, {'2': 5}, {'1': 90, '20': 100}]

CodePudding user response:

You can use pandas:

import pandas as pd

df = pd.read_csv('1.csv')

rack_list = df.groupby(['Rack'])[['Tube','sample_vol']].apply(lambda g:dict(map(tuple, g.values.tolist()))).tolist()
print(rack_list)

Output:

[{0: 230, 1: 200}, {2: 5}, {1: 90, 20: 100}]
  • Related