I'm currently facing an issue related to the visualization of the data from the x axis in a candlestick chart.
In short words:
The vertical grid lines plotted do not align with the actual candlesticks.
Some of these vertical grid lines are instead off by
1
candlestick after the very first candlestick.
As can be seen in the chart down below:
The code I wrote to plot the example above is shown down below:
from binance.client import Client
import pandas as pd
import time
import mplfinance as mpf
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
def klines_to_df(df_trading_pair):
#drop unnecesary columns
df_trading_pair.drop(7, inplace = True, axis=1)
df_trading_pair.drop(8, inplace = True, axis=1)
df_trading_pair.drop(9, inplace = True, axis=1)
df_trading_pair.drop(10, inplace = True, axis=1)
df_trading_pair.drop(11, inplace = True, axis=1)
# Rename the column names for best practices
df_trading_pair.rename(columns = { 0 : 'Start Date',
1 : 'Open Price',
2 : 'High Price',
3 : 'Low Price',
4 :'Close Price',
5 : 'Volume',
6 :'End Date',
}, inplace = True)
# Convert Unix Time values to actual dates
df_trading_pair['Start Date'] = pd.to_datetime(df_trading_pair['Start Date'], unit='ms')
df_trading_pair['End Date'] = pd.to_datetime(df_trading_pair['End Date'], unit='ms')
df_trading_pair = df_trading_pair.astype({'Open Price': 'float'})
df_trading_pair = df_trading_pair.astype({'High Price': 'float'})
df_trading_pair = df_trading_pair.astype({'Low Price': 'float'})
df_trading_pair = df_trading_pair.astype({'Close Price': 'float'})
df_trading_pair = df_trading_pair.astype({'Volume': 'float'})
return df_trading_pair
def set_DateTimeIndex(df_trading_pair):
df_trading_pair = df_trading_pair.set_index('Start Date', inplace=False)
# Rename the column names for best practices
df_trading_pair.rename(columns = { "Open Price" : 'Open',
"High Price" : 'High',
"Low Price" : 'Low',
"Close Price" :'Close',
}, inplace = True)
return df_trading_pair
api_key = "your_api_key"
secret_key = "your_secret_key"
client = Client(api_key= api_key, api_secret= secret_key, tld= "com")
trading_pair= "DOTBUSD"
#get historical klines 60m ago UTC in the 3m timeframe
klines = client.futures_historical_klines(symbol=trading_pair, interval="3m", start_str = "1662914700", end_str="1662918120")
# Customize the df_trading_pair that stored klines
df_trading_pair = klines_to_df(pd.DataFrame(klines))
# Create another df just to properly plot the data
df_trading_pair_date_time_index = set_DateTimeIndex(df_trading_pair)
# Plotting
# Create my own `marketcolors` style:
mc = mpf.make_marketcolors(up='#2fc71e',down='#ed2f1a',inherit=True)
# Create my own `MatPlotFinance` style:
s = mpf.make_mpf_style(base_mpl_style=['bmh', 'dark_background'],marketcolors=mc, y_on_right=True)
# Plot it
trading_plot, axlist = mpf.plot(df_trading_pair_date_time_index,
figratio=(10, 6),
type="candle",
style=s,
tight_layout=True,
datetime_format = '%H:%M',
ylabel = "Precio ($)",
returnfig=True
)
# Add Title
symbol = trading_pair.replace("BUSD","") "/" "BUSD"
axlist[0].set_title(f"{symbol} - 3m", fontsize=25, style='italic', fontfamily='fantasy')
So, I came here to learn how to properly adjust the grid lines to the plotting of candlestick data, after reading this
CodePudding user response:
Figured it out, it was necessary to set show_nontrading=True
first in the #Plot it
part, for then deciding which times in the x axis should be shown.
trading_pair= "DOTBUSD"
# Create another df just to properly plot the data
df_trading_pair_date_time_index = set_DateTimeIndex(df_trading_pair)
# Plot it
trading_plot, axlist = mpf.plot(df_trading_pair_date_time_index,
figratio=(10, 6),
type="candle",
style=s,
tight_layout=True,
datetime_format = '%H:%M',
ylabel = "Precio ($)",
returnfig=True,
show_nontrading=True
)
# Add Title
symbol = trading_pair.replace("BUSD","") "/" "BUSD"
axlist[0].set_title(f"{symbol} - 3m", fontsize=25, style='italic', fontfamily='fantasy')
# Find which minutes to show every 6 minutes starting at the last row of the df
x_axis_minutes = []
for i in range (1,len(df_trading_pair_date_time_index),2):
x_axis_minutes.append(df_trading_pair_date_time_index.index[-i].minute)
# Set the main "ticks" to show at the x axis
axlist[0].xaxis.set_major_locator(mdates.MinuteLocator(byminute=x_axis_minutes))
# Set the x axis label
axlist[0].set_xlabel('Zona Horaria UTC')
trading_plot.savefig(f'{trading_pair}.png',dpi=600, bbox_inches = "tight")
Output: