Home > Blockchain >  How to make a single vector/array?
How to make a single vector/array?

Time:09-27

Consider the following cnn model

def create_model():
  x_1=tf.Variable(24)
  bias_initializer = tf.keras.initializers.HeNormal()
  model = Sequential()
  model.add(Conv2D(32, (5, 5),  input_shape=(28,28,1),activation="relu", name='conv2d_1', use_bias=True,bias_initializer=bias_initializer))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Conv2D(64, (5, 5), activation="relu",name='conv2d_2',  use_bias=True,bias_initializer=bias_initializer))
  model.add(MaxPooling2D(pool_size=(2, 2)))
  model.add(Flatten())
  model.add(Dense(320, name='dense_1',activation="relu", use_bias=True,bias_initializer=bias_initializer),)
  model.add(Dense(10, name='dense_2', activation="softmax", use_bias=True,bias_initializer=bias_initializer),)
  return model

I create a model_1=create_model() instance of the above model. Now consider the following


combine_weights=[]
for layer in model.layers:
  if 'conv' in layer.name or 'fc' in layer.name:
    print(layer)
    we=layer.weights
    combine_weights.append(we)

From model_1, the above code takes the weights of convolutional layers/fc layers and combine them in a single array of combine_weight. The dtype of combine_weight is attained through print(type(combine_weights)) giving the type <class 'list'>

Now, I try to reshape all these weights to result in a single row vector/1-d array by using the following combine_weights_reshape=tf.reshape(tf.stack(combine_weights,[-1])) which gives the following error

<ipython-input-80-dee21fe38c89> in <module>
----> 1 combine_weights_reshape=tf.reshape(tf.stack(combine_weights,[-1]))

1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name)
   7184 def raise_from_not_ok_status(e, name):
   7185   e.message  = (" name: "   name if name is not None else "")
-> 7186   raise core._status_to_exception(e) from None  # pylint: disable=protected-access
   7187 
   7188 

InvalidArgumentError: Shapes of all inputs must match: values[0].shape = [5,5,1,32] != values[1].shape = [32] [Op:Pack] name: stack

How can I reshape the combine_weight into a single row vector/array?

CodePudding user response:

I got the desired result with the following

combine_weights=[]
con=[]
for layer in model.layers:
  if 'conv' in layer.name or 'fc' in layer.name:
    print(layer.name)
    we=layer.weights[0]
    we_reshape=tf.reshape(we,[-1])
    # bi=layer.weights[1]
    combine_weights.append(we_reshape)
    print(combine_weights)
    print(len(combine_weights))
    con=tf.concat([con,we_reshape], axis=[0])
    print(con)
  • Related