Be the following python pandas DataFrame:
| num_ID | start_date | end_date | time |
| ------ | ----------- | ---------- | ----------------- |
| 1 | 2022-02-14 | 2022-02-15 | 0 days 09:23:00 |
| 2 | 2022-02-12 | 2022-02-15 | 2 days 10:23:00 |
| 2 | 2022-02-05 | 2022-02-27 | 22 days 02:35:00 |
| 3 | 2022-02-04 | 2022-02-06 | 1 days 19:55:00 |
And the following DataFrame containing consecutive dates with their respective holiday values in the is_holiday
column.
| date | is_holiday | name | other |
| ---------- | ---------- | ---- | ----- |
| 2022-01-01 | True | ABC | red |
| 2022-01-02 | False | CNA | blue |
...
# we assume in this case that the omitted rows have the value False in column
| 2022-02-15 | True | OOO | red |
| 2022-02-16 | True | POO | red |
| 2022-02-17 | False | KTY | blue |
...
| 2023-12-30 | False | TTE | white |
| 2023-12-31 | True | VVV | red |
I want to add a new column total_days
to the initial DataFrame that indicates the total holidays marked True in second DataFrame that each row passes between the two dates (start_date
and end_date
).
Output result example:
| num_ID | start_date | end_date | time | total_days |
| ------ | ----------- | ---------- | ----------------- | -------------- |
| 1 | 2022-02-14 | 2022-02-15 | 0 days 09:23:00 | 1 |
| 2 | 2022-02-12 | 2022-02-15 | 2 days 10:23:00 | 1 |
| 2 | 2022-02-05 | 2022-02-27 | 22 days 02:35:00 | 2 |
| 3 | 2022-02-04 | 2022-02-06 | 1 days 19:55:00 | 0 |
CodePudding user response:
Use DataFrame.merge
with cross join by rows with only True
s filtering by column holiday
, filter by Series.between
and count by GroupBy.size
, last add new column with DataFrame.join
:
df2 = df.merge(df1.loc[df1['holiday'], ['date']], how='cross')
s = (df2[df2['date'].between(df2["start_date"],df2["end_date"])]
.groupby(['start_date','end_date']).size())
df = df.join(s.rename('total_holidays'), on=['start_date','end_date'])
df['total_holidays'] = df['total_holidays'].fillna(0, downcast='int')
print (df)
num_ID start_date end_date total_time total_holidays
0 1 2022-02-14 2022-02-15 0 days 09:23:00 1
1 2 2022-02-12 2022-02-15 2 days 10:23:00 1
2 2 2022-02-05 2022-02-27 22 days 02:35:00 2
3 3 2022-02-04 2022-02-06 1 days 19:55:00 0
CodePudding user response:
If your data is small, a cartesian join is fine; as your data increases, it becomes inefficient, as you are comparing every row between both dataframes. A better way is to use some form of binary search, to get your matches - conditional_join from pyjanitor offers an efficient way for non-equi joins:
# pip install pyjanitor
# you can install the dev version for latest improvements
# pip install git https://github.com/pyjanitor-devs/pyjanitor.git
import pandas as pd
import janitor
df.start_date = pd.to_datetime(df.start_date)
df.end_date = pd.to_datetime(df.end_date)
df2.date = pd.to_datetime(df2.date)
# relevant columns
cols = [*df.columns, 'is_holiday']
out = (df
.conditional_join(
df2.loc[df2.is_holiday == "True"],
('start_date', 'date', '<='),
('end_date', 'date', '>='),
how = 'inner')
.loc(axis = 1)[cols]
.groupby(cols[:-1])
.size()
.rename('total_days')
)
Merge back to the original dataframe to get the final output
(df
.merge(out, how = 'left', on = cols[:-1])
# fillna is faster on a Series
.assign(total_days = lambda df: df.total_days.fillna(0, downcast = 'infer'))
)
num_ID start_date end_date time total_days
0 1 2022-02-14 2022-02-15 0 days 09:23:00 1
1 2 2022-02-12 2022-02-15 2 days 10:23:00 1
2 2 2022-02-05 2022-02-27 22 days 02:35:00 2
3 3 2022-02-04 2022-02-06 1 days 19:55:00 0
With the dev version, you could preselect columns and also possibly avoid the merge back to the original dataframe. At any rate, for performance, if you can, avoid a cross join.