I have a nested JSON data. I want to get the value of key "name" inside the dictionary "value" based on the key "id" in "key" dictionary (let the user enter the id). I don't want to use indexing which, because places are changing on every url differently. Also data is large, so I need one row solution (without for loop).
Code
import requests, re, json
r = requests.get('https://www.trendyol.com/apple/macbook-air-13-m1-8gb-256gb-ssd-altin-p-67940132').text
json_data1 = json.loads(re.search(r"window.__PRODUCT_DETAIL_APP_INITIAL_STATE__=({.*}});window", r).group(1))
print(json_data1)
print('json_data1:',json_data1['product']['attributes'][0]['value']['name'])
Output
{'product': {'attributes': [{'key': {'name': 'İşlemci Tipi', 'id': 168}, 'value': {'name': 'Apple M1', 'id': 243383}, 'starred': True, 'description': '', 'mediaUrls': []}, {'key': {'name': 'SSD Kapasitesi', 'id': 249}..........
json_data1: Apple M1
JSON Data
{
"product": {
"attributes": [
{
"key": { "name": "İşlemci Tipi", "id": 168 },
"value": { "name": "Apple M1", "id": 243383 },
"starred": true,
"description": "",
"mediaUrls": []
},
{
"key": { "name": "SSD Kapasitesi", "id": 249 },
"value": { "name": "256 GB", "id": 3376 },
"starred": true,
"description": "",
"mediaUrls": []
},
.
.
.
]
}
}
Expected Output is getting value by key id: (type must be str)
input >> id: 168
output >> name: Apple M1
CodePudding user response:
Since you originally didn't want a for loop, but now it's a matter of speed,
Here's a solution with for loop, you can test it and see if it's faster than the one you already had
import json
with open("file.json") as f:
data = json.load(f)
search_key = int(input("Enter id: "))
for i in range(0, len(data['product']['attributes'])):
if search_key == data['product']['attributes'][i]['key']['id']:
print(data['product']['attributes'][i]['value']['name'])
Input >> Enter id: 168
Output >> Apple M1
CodePudding user response:
I found the solution with for loop. It works fast so I preferred it.
for i in json_data1['product']['attributes']:
cpu = list(list(i.values())[0].values())[1]
if cpu == 168:
print(list(list(i.values())[1].values())[0])
CodePudding user response:
Iteration is unavoidable if the index is unknown, but the cost can be reduced substantially by using a generator expression and Python's built-in next function:
next((x["value"]["name"] for x in data["product"]["attributes"] if x["key"]["id"] == 168), None)
Edit:
To verify that a generator expression is in fact faster than a for loop, here is a comparison of the running time of xFranco's solution and the above:
import time
def time_func(func):
def timer(*args):
time1 = time.perf_counter()
func(*args)
time2 = time.perf_counter()
return (time2 - time1) * 1000
return timer
number_of_attributes = 100000
data = {
"product": {
"attributes": [
{
"key": { "name": "İşlemci Tipi", "id": i },
"value": { "name": "name" str(i), "id": 243383 },
"starred": True,
"description": "",
"mediaUrls": []
} for i in range(number_of_attributes)
]
}
}
def getName_generator(id):
return next((x["value"]["name"] for x in data["product"]["attributes"] if x["key"]["id"] == id), None)
def getName_for_loop(id):
return_value = None
for i in range(0, len(data['product']['attributes'])):
if id == data['product']['attributes'][i]['key']['id']:
return_value = data['product']['attributes'][i]['value']['name']
return return_value
print("Generator:", time_func(getName_generator)(0))
print("For loop:", time_func(getName_for_loop)(0))
print()
print("Generator:", time_func(getName_generator)(number_of_attributes - 1))
print("For loop:", time_func(getName_for_loop)(number_of_attributes - 1))
My results:
Generator: 0.0075999999999964984
For loop: 43.73920000000003
Generator: 23.633300000000023
For loop: 49.839699999999986
So apparently a generator expression is faster even if it has to traverse the entire data set.